Ideal Vacuum Cube High-Temperature Chemical-Resistant Hardware Kit, Designed For 6x6x6 Cubes
Made With High-Temperature And Chemical-Resistant Kalrez O-rings And 8-18 Stainless Steel Bolts
These high-temperature and chemical-resistant vacuum cube hardware kits are designed to be used as replacement parts, including o-ring seals and plate mounting bolts for 6x6x6 vacuum cubes. The o-ring form a vacuum tight seal between the cube frame and plate. These o-ring seals are installed on the inner sealing groove of the plate. They also replacement vacuum seals for our multicube coupling seal connector. The socket cap screws are used for fastening down the plates to the cube frame and are made of 18-8 stainless steel. The o-rings are made of Kalrez material and can be baked up to 275° C.
Note: Making use of the high-temperature capabilities of these Kalrez o-ring replacement kits will require the use of uncoated, bare-metal 6x6 plates. The blue powder coated plates will not withstand repeated exposures to temperatures above 150° C without fading and discoloration.
Components included in the Hardware Kit for Cube 6x6 Plates
- Qty 6 each, Kalrez Chemical-Resistant And High-Tempurature O-rings for 6x6 Cube Plate
- Qty 48 each, 1/4"-20 SHCS Bolts for Plate Mounting, 18-8 Stainless
Ideal Vacuum Cube Introduction
Our Ideal Vacuum Cube is a modular high-vacuum chamber system, conceived to enable creativity and design flexibility in vacuum chamber system construction. Cubes can be stacked together into various shapes and configurations, with interchangeable plates offering a variety of features for connections, windows, and feedthroughs. Plates include 1/4"-20 mounting threads on a standard 1" optical pattern for easy connection of hinges, posts, mounts, lenses, polarizers, and other accessories.
Durability and Versatility
The large inner dimensions and open design of Ideal Vacuum Cubes makes them perfect for many vacuum chamber applications and experiments. Vacuum Cubes are constructed of lightweight 6061-T6 aluminum alloy, allowing them to be easily transported around the lab and mounted on optical tables (unlike heavy stainless steel vacuum chambers). A patent-pending seal protective design, stainless steel thread inserts, and powder-coated outside plate finish help make the Vacuum Cube a durable tool for even the most demanding use.
Technical Details
Patent-Pending Chamber System
Our Ideal Vacuum Cubes have a patent pending design which features our Taper-Seal technology. Unlike other vacuum flange designs, such as, Conflat CF, KF/NW, or ISO-LF (large flange), which can be easily damaged when set on work surfaces, our Taper-Seal design protects critical sealing edges and o-rings from contact which can cause damage or contamination.
Innovative Chamber Building Blocks
Ideal Vacuum Cubes can easily be stacked together to build a complex, yet lightweight vacuum system (see graphic below). The outer edges of each vacuum cube feature hardware mounting sockets for easy cube-to-cube connections. A cube coupling kit includes the hardware needed to connect two cubes together. This allows scientists to creatively construct long or odd-shaped vacuum systems in a laboratory.
Configurable Plates and Accessories
The Vacuum Cube can be configured with a wide variety of plates and windows with many options. A Vacuum Cube can be fitted feedthroughs for electrical power, thermocouple temperature measurements, optical lasers light or imaging detectors, gas supply, or fluid flow for heat/cooling recirculation lines. Compatible standard flange styles include KF-16, KF-25, KF-40, KF-50, ISO-63, along with conlfat CF 2.75, CF 3.375, and CF 4.5 inch flanged ports. Viewing windows are also available, and custom plates can be manufactured on request. An optional hinge kit can be ordered to convert any plate into an operable door.
Applications for Ideal Vacuum Cubes
Our Ideal Vacuum Cubes are designed to implement well into optics laboratories for quick installation in laser research applications. The graphic below depicts an example laser spectroscopy laboratory setup, cavity ring down spectroscopy (CRDS) vacuum chamber system, using a 6x6x18 inch Ideal Vacuum Cube chamber. The modular design of our Ideal Vacuum Cubes make them suitable for many vacuum chamber applications:
- Vacuum Ultraviolet (VUV) Devices and Experiments
- Thermal Vacuum Testing
- Altitude Testing
- Vacuum Degassing Chamber
- High Power and Ultra Short Pulsed Lasers Research and Development
- Ion Acceleration
- RGA (Residual Gas Analyzers)
- Helium Leak Testing of Hermetic Sealed Devices With Welded In Helium Atmosphere
- Leak Detection Of Pharma Packaging
- Spectroscopy
- Molecular Ion Trap
- Cryostat Vacuum Chamber
- Beamlines
Vacuum Cube Pumping Performance
The pump down curves for several Ideal Vacuum Cube configurations are shown in the graphs below. A single 6x6x6 inch Cube can be pumped from atmosphere to 1x10
-5 Torr in 2.5 minutes and below 1x10
-6 Torr in around 15 minutes.
(
view curves graphic 1)
This was accomplished using a 68 liters/second turbomolecular pump backed by a 110 liters/minute (3.3 cfm) dry scroll vacuum pump.
We have also provided roughing pump down curves for popular Agilent Varian IDP-3 and SH-110 dry scroll pumps. The 6x6x6 Cube reaches base pressure of 300 mTorr for the IDP-3 (2.1 cfm) in less than 1 minute of pumping, and 50 mTorr for Agilent Varian SH-110 (3.3 cfm) in around 2 minutes.
(
view curves graphic 2)
On special request we can offer fully anodized plates to help with absorption of scattered light in laser research and optical applications. Anodized components do not pump down as fast as bare aluminum metal surfaces.
(
view curves graphic 3)
A single 6x6x6 with anodized plates required 1 hour of pumping to reach 1x10
-5 Torr.