

Intended Use

The BPG402-SD. BPG402-SE and BPG402-SP gauges have been designed for vacuum measurement of gases and gas mixtures in a pressure range of 5×10⁻¹⁰ ... 1000 mbar.

Ľ\$ General technical data of the sensor and sensor electronics $\rightarrow \square$ [1], [2].

Technical Data

Gauge identification 42 k Ω between pin 10 and pin 5 (sensor cable) Grounding principle → "Power Connection"

using the lock screws

yle, 5-pin, let), female g side	
a ank i	+24 V (dc)
ce only)	GND

and the DeviceNet at the same time, data trans-

Set the node address (0 ... 63_{dec}) via the "ADDRESS" "MSD" and "LSD" switches. The node address is polled by the firmware when the gauge is switched on. If the setting deviates from the stored value, the new value is taken over into the NVRAM. If a setting higher than 63 is made, the previous node address setting remains valid.

If the MSD switch is in the "P" position, the node address is programmable via the

By means of the "RATE" switch the data rate can be set to 125 ("1"), 250 ("2") or 500 kBaud ("5").

rate is programmable via the DeviceNet ($\rightarrow \square$ [3])

Status Lights

STA	TUS
NET	MOD
0	\odot
NET	

"STATUS MOD" (gauge status):

Light status	Meaning
Off	No supply
Flashing red/green	Selftest
Green	Normal operation
Red	Non recoverable error

"STATUS NET" (network status):

Light status	Meaning
Off	Gauge not online: – Selftest not yet concluded – No supply, → "STATUS MOD" light
Flashing green	Gauge online but no connection: – Selftest concluded, but no connection to other nodes established – Gauge not assigned to any master
Green	Gauge online; necessary connections es- tablished
Flashing red	One or several input/output connections in "timed out" status
Red	Communication error. The gauge has de- tected an error that impedes communica- tion via the network (e.g. two identical node addresses (MAC ID) or "Bus-off")

BPG402-SE

LL.

General Information

The BPG402-SE gauge has a fieldbus interface that conforms to the EtherCAT Technology Group (ETG) and to the EtherCAT Semiconductor Device Profile ($\rightarrow \square$ [11], [12]). Via this interface, the following and further data are exchanged in the standardized EtherCAT

- Protocol ($\rightarrow \square$ [1], [2]):
- Pressure reading
- Pressure unit (mbar, Torr, Pa)
- Degas function
- Status and error messages

Two adjustable switching functions are integrated in the gauge. The corresponding relay contacts are available at the sensor cable connector

The basic sensor and sensor electronics of the BPG402-SE type are the same as in the standard BPG402-S ($\rightarrow \square$ [1],

Technical Data

General technical data of the sensor and sensor electronics $\rightarrow \square$ [1], [2].

Fieldbus Interface

Fieldbus name	EtherCAT
Standard applied, data format, communication protocol	→ 🕮 [11], [12]
Data rate	100 Mbps
Node address	explicit device identifi- cation
Physical layer	100Base-Tx (IEEE 802.3)
EtherCAT connector	2×RJ45, 8-pin (socket) <in>: EtherCAT input <out>: EtherCAT output</out></in>
Cable	shielded, 8-pin special Ethernet Patch cable (quality CAT5e or higher)
Cable length	≤100 m
	Standard applied, data format, communication protocol Data rate Node address Physical layer EtherCAT connector Cable

Supply Voltages

The power consumption of the BPG402-SE is higher than that of the standard BPG402-S.

Supply voltage at sensor cable +24 V (dc) (+20 ... +28 V) connector, pin 8 Power consumptio ≤21 W

Sensor Cable Connection

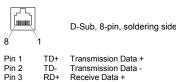
→ "Technical Data, Sensor Cable Connection" of the gauge BPG402-SD (identical).

Dimensions

Housing and vacuum connection \rightarrow [1], [2]

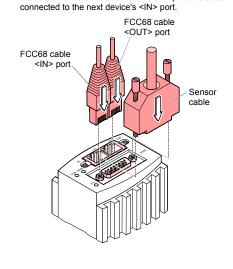
Weight		
353-590	≈490 g	
353-591	≈750 g	

Power Connection


Make sure the vacuum connection is properly made $(\rightarrow \square [1], [2], "Vacuum Connection")$

Sensor Cable Connection

- If no sensor cable is available, make one according to the diagram shown in the BPG402-SD section (identical)
- 2 Connect the sensor cable to the gauge and secure the sensor cable connector using the lock screws


EtherCAT Cable Connection

If no Ethernet cables are available, make two according to the following indications:

- Pin 4 not used
- Pin 5 not used
- Pin 6 RD- Receive Data
- Pin 7 not used Pin 8 not used

Connect the Ethernet cables to the gauge: From the previous device the cable connected to the OUT port has to be connected to the BPG402-SE <IN> port. And the cable from the BPG402-SE <OUT> port has to be

/! Caution Caution: data transmission errors

Operation

If the gauge is operated via an RS232 interface and the EtherCAT at the same time, data transnission errors may occur. The gauge must not be operated via an RS232 interface and the EtherCAT at the same time.

Operating Software

For operating the gauge via EtherCAT, prior installation of the device specific ESI file is required on the bus master side. This file can be downloaded from our website.

Explicit Device Address Setting

During device initialization, the device address switches are read by the device firmware. This device address is sup-ported to the master as Explicit Device Identification. The explicit device address is set in hexax10 decimal form (00 ... FF_{hex}) via the <x10> 2,4,6 2,4,6 2,4,6 2,4,6 2,4,6 2,4,6 2,4,6 2,4,6 and <x1> switches.

Adjusting the Gauge

 \rightarrow Adjustment and settings.

BPG402-SP

u,

0

€×

٩.

Adjusting the Switching Functions

General Information

• Pressure unit (mbar, Torr, Pa)

Two adjustable switching functions are integrated in the

· Status and error messages

 \rightarrow "Adjustment and settings"

 $(\rightarrow \square [12]).$

 $col (\rightarrow \square [1], [2]);$

Degas function

· Pressure reading

The BPG402-SP gauge has a fieldbus interface

Via this interface, the following and further data

are exchanged in the standardized Profibus proto-

that conforms to the Profibus DPV1 standard

Profibus Cable Connection

Supply Voltages

connector, pin 8

Power consumption

BPG402-SD (identical).

Power Connection

(identical)

 $(\rightarrow \square [1], [2], "Vacuum Connection")$

Sensor Cable Connection

Dimensions

353-574

353-575

Weight

Supply voltage at sensor cable

Sensor Cable Connection

Housing and vacuum connection $\rightarrow \square$ [1], [2]

Make sure the vacuum connection is properly made

The power consumption of the BPG402-SP is higher

≤20 W

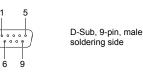
+24 V (dc) (+20 ... +28 V)

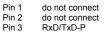
than that of the standard BPG402-S.

 \rightarrow "Technical Data, Sensor Cable Connection" of the gauge

≈490 a

≈750 g

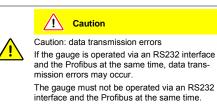

0 If no Profibus cable is available, make one according to the following indications:


If no sensor cable is available, make one according to

Connect the sensor cable to the gauge and secure the

sensor cable connector using the lock screws.

the diagram shown in the BPG402-SD section



Pin 4 CNTR-P Pin 5 DGND

- Only required as line termination for devices at both
- 2 Connect the Profibus cable to the gauge and secure the Profibus cable connector using the locking screws.

Operation

Operating Software

For operating the gauge via the Profibus network, prior installation of the gauge specific GSD file is required. This software can be downloaded via internet ($\rightarrow \square$ [6]).

Note Address Setting

The node address (0 ... 125_{dec}) is set in ADDRESS MSD LSD hexadecimal form (00 ... 7D_{hex}) via the "ADDRESS", "MSD", and "LSD" switches The node address is polled by the firmware when the gauge is switched on. If the setting deviates from the stored value, the new value is taken over into the NVRAM. If a value >125_{dec} (>7D_{hex}) is entered, the node address setting currently stored in the device remains valid but it can now be defined via Profibus ("Set slave Address", $\rightarrow \square [4]$ Default address setting is 5Chex.

Adjusting the Gauge

 \rightarrow Adjustment and settings.

Adjusting the Switching Functions

→ "Adjustment and settings"

Adjustment and Settings

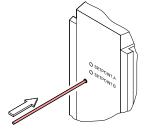
For BPG402-SD, BPG402-SE and BPG402-SP gauges.

Adjusting the Gauge

The gauge is factory calibrated. If used under different climatic conditions, at extreme temperatures, through aging or contamination and after exchanging the sensor, the characteristic curve can be offset and readjustment can become necessary. Only the Pirani part can be adjusted.

Adjusting the Gauge at Atmospheric Pressure

At the push of a button the digital value and thus the analog output are adjusted electronically to +10 V at atmospheric pressure. Adjustment is necessary if


- at atmospheric pressure, the output signal is <+10 V
- the display reads < atmospheric pressure (if the gauge
- has a display) at atmosphere, the digital value of the RS232C interface is
- < atmospheric pressure at atmosphere, the digital value received by the bus con-
- troller of the fieldbus gauges (DeviceNet or Profibus) is < atmospheric pressure
- when the vacuum system is vented, the digital value of the RS232C interface reaches its maximum before the measured pressure has reached atmosphere

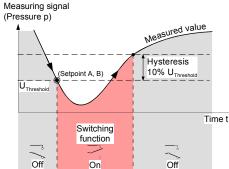
when the vacuum system is vented, the digital value received by the bus controller of the fieldbus (DeviceNet or Profibus) reaches its maximum before the measured pressure has reached atmosphere.

Procedure

- Operate gauge for approx. 10 minutes at atmospheric pressure
 - If the gauge was operated before in the Bayard-Alpert range, a cooling-down time of approx. 30 minutes is to be expected (gauge temperature = ambient temperature)

Press the button with a pin (max. ø1.3 mm) for 1 s.

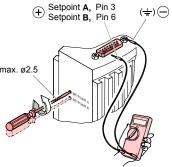
Zero Point Adjustment


Zero point readjustments are automatically carried out during operation of the gauge, no manual adjustments are required.

Setting the Switching Functions

The gauges BPG402-SD, BPG402two independent, manually adjustal Each switching function has a floating contact. The relay contacts are acc cable connector (\rightarrow "Power Connector" values of switching functions A and pressure range 1×10⁻⁹ mbar ... 100 "SETPOINT A" and "SETPOINT B". For the corresponding threshold vol lowing rule applies:

Where p pressure U Threshold voltage [V] c constant (pressure unit dependent) р


The hysteresis of the switching function is 10% of the threshold setting

Procedure

• Put the gauge into operation

2 Connect the + lead of a voltmeter to the threshold measurement point of the selected switching function ("Setpoint A" pin 3, "Setpoint B" pin 6) and its - lead to

The threshold voltages are referenced to ground (housing, vacuum connection), not to pin 5 (common power GND 24 V supply). The analog threshold voltage readings on pins 3 and 6 are only a guide line. Full accuracy can be achieved by reading the threshold voltage values via the fieldbus interface (→ □ [3], [4].

Using a screwdriver (max. ø2.5 mm), set the threshold of the selected switching function (Setpoint A, B) to the desired value UThreshold

A functional check of the switching functions (On/Off) is only possible via fieldbus interface $(\rightarrow \square$ [3] for BPG402-SD, $\rightarrow \square$ [4] for BPG402-SP, $\rightarrow \square$ [5] for BPG402-SE) or by measuring the relay contacts with a continuity checker/ohmmeter $(\rightarrow$ "Power Connection", sensor cable connector).

Pin 6 VP Pin 7 do not connect RxD/TxD-N Pin 8 Pin 9 do not connect ⁾ Only to be connected if an *optical link* module is used. ends of bus cable (\rightarrow [12]).

gauge. The corresponding relay contacts are available at the

The basic sensor and sensor electronics of the BPG402-SP

type are the same as in the standard BPG402-S ($\rightarrow \Box$ [1],

Technical Data BPG402-SP

P General technical data of the sensor and sensor electronics $\rightarrow \square$ [1], [2].

Fieldbus Interface

sensor cable connector

Fieldbus name	Profibus
Standard applied	→ 🛄 [12]
Communication protocol, data format	→ 🖽 [4], [12]
uala loimal	→ 📖 [4], [12]
Interface, physical	RS485
· ·	
Profibus Parameters	
Data rate	≤12 Mbaud (→ 🛄 [4],
	[12])
Node address	00 7D _{hex} (0 125 _{dec})
Profibus connection	D-Sub, 9-pin, female
Cable	Shielded special Profibus
	cable (→ □ [8], [12])
Cable length, system wiring	According to Profibus
	specifications
	$(\rightarrow \square [8], [12])$

SE and BPG402-SP have ble switching functions.
ng, normally open relay
essible at the sensor ction").The threshold
B can be set within the
mbar via potentiometers
Itages U _{Threshold} , the fol-

 $U_{\text{Threshold}} = 0.75 \times (\log p_{\text{Setpoint}} - c) + 7.75$

a ground contact nearby (e.g. grounded locking screw nut of connector or vacuum connection of the gauge).

Further Information

· [1]	www.inficon.com Instruction Sheet Bayard-Alpert Pirani Gauge BPG402-S, BPG402-SD, BPG402-SP tima46e1 INFICON AG, LI–9496 Balzers, Liechtenstein
III [2]	www.inficon.com Operating Manual Bayard-Alpert Pirani Gauge BPG402-S, BPG402-SD, BPG402-SP tina46e1 INFICON AG, LI–9496 Balzers, Liechtenstein
💷 [3]	www.inficon.com Communication Protocol DeviceNet™ BPG402-SD tira46e1 INFICON AG, LI–9496 Balzers, Liechtenstein
□ [4]	www.inficon.com Communication Protocol Profibus BPG402-SP tira47e1 INFICON AG, LI–9496 Balzers, Liechtenstein
🛄 [5]	www.inficon.com Communication Protocol EtherCAT BPG402-SE tira93e1 INFICON AG, LI–9496 Balzers, Liechtenstein
🕮 [6]	www.inficon.com ("Semiconductor and Vacuum coating processes Vacuum Gauges") Product descriptions and downloads INFICON AG, LI–9496 Balzers, Liechtenstein
🖽 [7]	www.odva.org Open DeviceNet Vendor Association, Inc. "DeviceNet™ Specifications"
🕮 [8]	www.profibus.com Profibus user organisation
📖 [9]	European Standard for DeviceNet EN 50325

- [10] European Standard for Profibus EN 50170
- [11] ETG.5001.1: Semiconductor Device Profile Part 1: Common Device Profile (CDP)
- □ [12] ETG.5003.2080: Semiconductor Device Profile Part 2080: Specific Device Profile (SDP): Vacuum Pressure Gauge

www.inficon.com