979B
Atmosphere to Vacuum Transducer

Operation and Maintenance Manual
979B Atmosphere to Vacuum Transducer

Part # 100014647 Revision D
Part # ________ - __________________

Please fill in the transducer part and flange type numbers in the space above and have them readily available when calling for service or additional information.

(The part number can be found on your packing slip. Both the part number and serial number are located on the bottom side of the housing.)

For more information or literature, contact:

HPS® Products of MKS Instruments, Inc.
5330 Sterling Drive
Boulder, CO 80301 USA

Phone: 1-303-449-9861
1-800-345-1967

Fax: 1-303-442-6880

Web: www.mksinst.com/hpshome.html

©2005 by HPS® Products of MKS Instruments, Inc.
All rights reserved.

U.S. Patent No. 6,672,171 Foreign Patents Issued and Pending
U.S. Patent No. 6,756,785 Foreign Patents Issued and Pending
Table of Contents

Package Contents ... 9
Symbols Used in this Manual ... 10
Safety Precautions .. 11
General Specifications .. 13
Feature and Control Locations ... 14
About the 979B Transducer .. 15
Typical Applications for the 979B Transducer 16
Installing the 979B Transducer ... 17
 Transducer Installation ... 17
 Location .. 17
 Orientation ... 17
 Contamination ... 18
Vaccum Connection ... 18
Electrical Connection ... 19
 Input/Output Wiring ... 19
 Transducer Electrical Connections Table 20
 Relay Inductive Loads and Arc Suppression 20
Control and Status Pins Operation 21
 Degas On (Pin 13) .. 21
 Degas Status (Pin 9) ... 21
 Filament Select (Pin 10) ... 21
Operation ... 22
 Transducer Factory Defaults Table 22
RS-485 Protocol ... 23
 Standard Addresses .. 23
 Universal Addresses ... 23
Query and Command Syntax .. 23
 Response Syntax (ACK/NAK) ... 24
RS-485 Command Set ... 25
 Set Up Commands .. 25
 Active Filament – AF ... 25
 Address – AD .. 25
 Baud Rate – BR ... 26
 Analog Output – DAC .. 26
 Emission Current – EC .. 26
 Factory Default – FD ... 26
 RS Delay – RSD ... 27
 Test RS485 – TST .. 27
Before unpacking the 979B Transducer, check all surfaces of the packing material for shipping damage.

Confirm that the 979B Transducer package contains these items:

♦ One 979B unit (integrated sensor and electronics)

♦ One 979B Transducer Operation and Maintenance Manual

Inspect the components for visible evidence of damage during shipment. If anything has been damaged, notify the carrier immediately. Keep all shipping materials and packaging for claim verification.

📞 If any items are missing from the package, call MKS Customer Service at 1-303-449-9861 or 1-800-345-1967.

Do not return the product to MKS unless specified to do so by MKS Customer Service.

MKS customer service and support:

MKS Instruments, Inc. Telephone 1-303- 449-9861
5330 Sterling Dr. Toll-Free 1-800-345-1967 (USA only)
Boulder, CO 80301 Facsimile 1-303- 449-2003
USA

Europe:

MKS Denmark Aps Telephone +45 44 92 92 99
Nordre Strandvej 119 G Facsimile +45 44 92 94 99
DK-3150 Hellebaek
Denmark
Symbols Used in this Manual

CAUTION: Risk of electrical shock.

CAUTION: Refer to the manual. Failure to heed the message could result in personal injury, serious damage to the equipment, or both.

Calls attention to important procedures, practices, or conditions.
Always disconnect the power supply before removing electronics from the Hot Cathode sensor for sensor replacement or bakeout purposes. Lethal voltages and currents may be present while the circuit is operating. Only a qualified technician should replace or adjust electronic components.

Use the proper power source. Use +24 VDC @ 0.75 Amps.

Properly ground the transducer. The transducer should be connected to earth ground both through the vacuum flange and the back shell of the electrical connector.

Do not turn on filament power when system pressure is above 5×10^{-2} Torr. Hot Cathode sensor damage will result.

Do not operate with explosive gas mixtures or gases that are combustible in air. The Hot Cathode sensor has a heated element and the MicroPirani uses a thin-film Nickel element that is heated to a constant temperature above ambient. Either of these could ignite explosive gas mixtures.

Do not substitute parts or modify instrument. Do not install substitute parts or perform any unauthorized modification to the instrument. Return the instrument to an MKS Calibration and Service Center for service and repair to ensure that all of the safety features are maintained.
Allow only qualified technicians to service the transducer. Users should not remove covers, casing, or plug-in components. Injury may result. A qualified technician must perform any part replacement or internal adjustments.

Keep the unit free of contaminants. Do not allow contamination of any kind to enter the unit before or during use. Contaminants such as dust, dirt, lint, glass chips, and metal chips may permanently damage the unit.
General Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring range</td>
<td>5×10^{-10} to ATM</td>
</tr>
<tr>
<td>Set point range</td>
<td>5×10^{-10} to 100 Torr</td>
</tr>
<tr>
<td>Analog out</td>
<td></td>
</tr>
<tr>
<td>DAC1</td>
<td>0.5 to 6.95 VDC, 0.5 V/decade</td>
</tr>
<tr>
<td>DAC2</td>
<td>.75 to 10.02 VDC, .75 V/decade</td>
</tr>
<tr>
<td>Over pressure limit</td>
<td>1500 Torr</td>
</tr>
<tr>
<td>Repeatability (Typical)</td>
<td>1×10^{-9} to 10^{-3} Torr +/- 5% of reading</td>
</tr>
<tr>
<td></td>
<td>10^{-3} to 100 Torr +/- 2% of reading</td>
</tr>
<tr>
<td>Accuracy (Typical)</td>
<td>10^{-9} to 10^{-3} Torr +/- 20% of reading</td>
</tr>
<tr>
<td></td>
<td>10^{-3} to 100 Torr +/- 5% of reading</td>
</tr>
<tr>
<td>Supply voltage</td>
<td>24 VDC +/- 10%</td>
</tr>
<tr>
<td>Power consumption</td>
<td>15 Watts</td>
</tr>
<tr>
<td>Relay contact rating</td>
<td>1A @ 30 VAC/VDC resistive load</td>
</tr>
<tr>
<td></td>
<td>Semi 52/UL991 Safety Compliant</td>
</tr>
<tr>
<td>Materials exposed to vacuum</td>
<td>304 stainless steel, Silicon, SiO$_2$, SiN$_4$, gold,</td>
</tr>
<tr>
<td></td>
<td>Viton®, glass, tungsten, platinum clad molybdenum,</td>
</tr>
<tr>
<td></td>
<td>yttria coated iridium, epoxy resin, Kovar</td>
</tr>
<tr>
<td>Housing material</td>
<td>Aluminum / 304 stainless steel</td>
</tr>
<tr>
<td>Internal volume</td>
<td>23 cm3</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>0 to 40°C</td>
</tr>
<tr>
<td>Bakeout temperature (not</td>
<td>85°C</td>
</tr>
<tr>
<td>operating)</td>
<td></td>
</tr>
<tr>
<td>Installation orientation</td>
<td>Any</td>
</tr>
<tr>
<td>CE certification</td>
<td>EMC Directive 89/336/EEC, EN-61326-1</td>
</tr>
<tr>
<td></td>
<td>Low-Voltage Directive 73/23/EEC, EN-61010-1</td>
</tr>
<tr>
<td>Vacuum connections</td>
<td>Mini CF, 2.75" CF, NW16 KF, NW25 KF, NW40 KF</td>
</tr>
<tr>
<td>Dimensions (with KF25)</td>
<td>2.9" x 3.1" x 3.9" (74 x 79.6 x 100 mm)</td>
</tr>
<tr>
<td>Weight (with KF 25)</td>
<td>.93 lbs. (422 g)</td>
</tr>
</tbody>
</table>
Feature and Control Locations

All user access is through the 15-pin D-sub connector and the two push button switches. See the RS-485 Command Set section for more information.

The POWER LED indicates when power is applied to the 979B Transducer. The FILAMENT ON LED indicates when power is applied to the transducer filament. The FILAMENT ON light can also be used in conjunction with the Test RS485 – TST command (described in the RS485 Command Set section) to visually identify which sensor is set to a particular address. This is useful when several HPS transducers are connected to the same system.

The figure below shows the front view of the 979B Transducer.
About the 979B Transducer

The 979B Transducer is designed to measure vacuum chamber pressures as part of a user’s designed system processes. It combines a Hot Cathode sensor to measure pressures from 5×10^{-10} to 3×10^{-3} Torr and a MicroPirani sensor to measure pressures from 1×10^{-3} to ATM. PR3 the combined absolute digital pressure output and the analog output provides a single combined reading from 5×10^{-10} Torr to ATM. In addition the two sensors can be read independently. Along with an analog output external controls are available for filament select degas so the transducer (often set point values, calibration values ect. have been entered) can operate independently.

This manual describes the installation and configuration tasks necessary to set up the 979B Transducer.

For additional information on how the 979 ATV Transducer works, see the appendix How the 979B Transducer Works.
Typical Applications for the 979B Transducer

♦ Measure high vacuum pressure.

♦ Control system pressure using digital communications or analog output as input to an automatic pressure controller.

♦ Measure foreline and roughing pressures generated by mechanical vacuum pumps.

♦ Control valves and pumps to automate pump-down using relay set points.

♦ Sense abnormal pressure and take appropriate security measures using relay set points.

♦ Start or stop system processes with relay set points.

♦ Measure pressures of backfilling gases.
Installing the 979B Transducer

ATV Transducer Installation

Location

Locate the 979B Transducer where it can measure chamber pressure. Install the device away from pumps and gas sources so it will give the most representative pressure values.

Orientation

The 979B Transducer can be installed and operated in any position without compromising accuracy.
Contamination

Locate and orient the Transducer where contamination is least likely. For example, if the Transducer is mounted directly above a source of evaporation, the vapor could contaminate the sensor elements and cause the calibration to shift. Whenever possible, install the Transducer with the vacuum port facing down to keep particulates or liquids from entering the device. To prevent inaccurate pressure measurements, shield a 979B located near an electron or ion source (e.g., near an electron beam source or in a sputtering system) and mount it away from strong magnetic fields. See accessories (Page 45) for particulate filters, these can be on the inlet of the 979B to prevent particulates from entering the sensor assembly.

Vacuum Connection

The 979B Transducer is available with the following flanges:

- 2.75" CF (rotatable)
- 1.33" CF (rotatable)
- KF 16
- KF 25
- KF 40

The figure below shows the dimensions for each flange type. The top dimensions, also shown below, are valid for any flange configuration.
Electrical Connection

Use a cable with a female, 15-pin, high-density D-sub connector with strain reliefs to ensure proper electrical connection and to reduce stress on the connectors.

Ensure a low impedance electrical connection between the 979B sensor body and the grounded vacuum system to shield the sensor from external electromagnetic sources.

Input/Output Wiring

The figure and the 979B Transducer Electrical Connections Table on the following page identify the pins of the 979B connector and their functions; make a cable using this information. To comply with EN61326-1 immunity requirements, use a braided, shielded cable. Connect the braid to the metal hoods at both ends of the cable with the end for power supply connected to earth ground.

The power supply input is 24 VDC. The positive side of the power supply is connected to pin 3 and the negative side to pin 4 of the D-sub connector.

Damage may occur to the circuitry if excessive voltage is applied, polarity reversed, or if a wrong connection is made.

If using analog output (described in the Analog Output section), the analog output voltages are pins 5 (+) and 6 (-). Connect them to a differential input voltmeter or an analog-to-digital (A/D) converter with a differential input in a system controller.

Do not connect the negative side of the analog output (pin 6) to the negative side of the power supply input (pin 4) or to any other ground. Doing so will cause half of the power current to flow through this wire. Measurement errors in the output voltage may be seen due to the voltage drop from this current. The longer the cable, the worse the error will be.
979B Transducer Electrical Connections Table

The digital communications connections are pins 1 and 2. RS-485 uses pin 1 for RS485(-) and pin 2 for RS485(+).

<table>
<thead>
<tr>
<th>PIN</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RS485 -/RS232 TXD</td>
</tr>
<tr>
<td>2</td>
<td>RS485 +/-/RS232 RXD</td>
</tr>
<tr>
<td>3</td>
<td>POWER + (24V)</td>
</tr>
<tr>
<td>4</td>
<td>POWER -</td>
</tr>
<tr>
<td>5</td>
<td>ANALOG OUT +</td>
</tr>
<tr>
<td>6</td>
<td>ANALOG OUT -</td>
</tr>
<tr>
<td>7</td>
<td>RELAY 1 N.O.</td>
</tr>
<tr>
<td>8</td>
<td>RELAY 1 COMMON</td>
</tr>
<tr>
<td>9</td>
<td>DEGAS STATUS</td>
</tr>
<tr>
<td>10</td>
<td>FILAMENT SELECT</td>
</tr>
<tr>
<td>11</td>
<td>RELAY 2 COMMON</td>
</tr>
<tr>
<td>12</td>
<td>RELAY 2 N.O.</td>
</tr>
<tr>
<td>13</td>
<td>DEGAS ON</td>
</tr>
<tr>
<td>14</td>
<td>RELAY 3 COMMON</td>
</tr>
<tr>
<td>15</td>
<td>RELAY 3 N.O.</td>
</tr>
</tbody>
</table>

relay inductive loads and arc suppression

If using the set point relay to switch inductive loads (e.g., solenoids, relays, transformers, etc.), the arcing of the relay contacts might interfere with 979B operation and reduce relay contact life. Therefore, an arc suppression network, shown schematically below, is recommended.

The values of the capacitance C and the resistance R can be calculated by the following equations:

\[C = \frac{I^2}{(1 \times 10^7)} \]
\[R = \frac{E}{I^a} \]

where:
- C is in farads
- R is in ohms
- I is DC or \(A_{\text{peak}} \) load current in amperes
- E is DC or \(A_{\text{peak}} \) source voltage in volts
- \(a = 1 + \frac{50}{E} \)
- Note that \(R_{\text{min}} = 0.5 \, \Omega \) and \(C_{\text{min}} = 1.0 \times 10^{-9} \, \text{F} \)
Control and Status Pins

Operation

Degas On (Pin 13)

Degas is enabled by connecting this pin to power ground. This line has precedence over the DG command or the Degas pushbutton. If this line is still connected to ground after degas times out (30 minutes) the line will need to be disconnected and reconnected to ground to re-enable degas.

Do not degas for more than 30 minutes every 4 hours.

Degas Status (Pin 9)

This pin is an open collector or floating when degas is off. When degas is on it is pulled to ground. An external pull up resistor can be connected to any Voltage of +24 Vdc or less. Limit the current to less than 15mA.

Filament Select (Pin 10)

Connecting / Disconnecting this pin to/from power ground changes the active filament.

Note: grounding the pin will not select a certain filament, changing the state of the pin will change the selected filament.
Operation

The 979B Transducer operation parameters are preset at the factory. The table below shows the factory default settings. Use the commands described on the following pages to change parameter settings as necessary. The user interface to the 979B Transducer is through RS-485 or RS-232 serial communications.

979B Transducer Standard Configuration Table

<table>
<thead>
<tr>
<th>Setting</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Filament</td>
<td>1</td>
</tr>
<tr>
<td>Address</td>
<td>253</td>
</tr>
<tr>
<td>Baud Rate</td>
<td>9600</td>
</tr>
<tr>
<td>Degas Power</td>
<td>Off</td>
</tr>
<tr>
<td>Emission Current</td>
<td>Auto</td>
</tr>
<tr>
<td>Enable Control Set Point</td>
<td>On</td>
</tr>
<tr>
<td>Filament Power</td>
<td>Off</td>
</tr>
<tr>
<td>Gas Correction</td>
<td>1</td>
</tr>
<tr>
<td>Gas Type Calibration</td>
<td>Nitrogen</td>
</tr>
<tr>
<td>Enable Set Point 1, 2, 3</td>
<td>Off</td>
</tr>
<tr>
<td>Hysteresis 1, 2, 3</td>
<td>1.10E0 Torr</td>
</tr>
<tr>
<td>Set Point Value 1, 2, 3</td>
<td>1.00E0 Torr</td>
</tr>
<tr>
<td>Set Point Direction 1, 2, 3</td>
<td>Below</td>
</tr>
<tr>
<td>Protect Set Point</td>
<td>1.0E-2 Torr</td>
</tr>
<tr>
<td>Unit</td>
<td>Torr</td>
</tr>
<tr>
<td>Analog Output</td>
<td>DAC1</td>
</tr>
<tr>
<td>485 Test</td>
<td>OFF</td>
</tr>
<tr>
<td>RS Delay</td>
<td>ON</td>
</tr>
</tbody>
</table>

RS232 Communications Wiring Connection:

```
<table>
<thead>
<tr>
<th>Transducers with 15-Pin HD-DSUB</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-232 Com Port 15-Pin</td>
</tr>
<tr>
<td>9-Pin HD-DSUB TXD</td>
</tr>
<tr>
<td>RXD 2</td>
</tr>
<tr>
<td>GND 4</td>
</tr>
</tbody>
</table>
```

22 979B Atmosphere to Vacuum Transducer
RS-485 Protocol

RS232 USES THE SAME PROTOCOL.

The 979B supports 4800, 9600, 19200, 38400, 57600, 115200 baud rates (factory setting: 9600). The data format is 8 data bits, no parity, and one stop bit.

RS485 is two wires (half duplex).

Standard Addresses

Valid addresses are 3 digits, 001 to 253 (factory setting: 253).

Universal Addresses

The 979B receives and responds to commands sent to address 254. For example, use 254 to communicate with a device if its address is unknown. The 979B receives and acts upon commands sent to address 255, but does not respond; use 255 to broadcast messages to multiple devices attached to the same system. For example, use 255 to change the baud rate for all devices.

Query and Command Syntax

Queries return current parameter settings; commands change the parameter setting according to the value the user types in the command syntax. Each query or command must begin with the attention character @ and end with the termination string ;FF.

Syntax required for a query is:
@<device address><query>?;FF.

Syntax required for a command is:
@<device address><command>!<parameter>;FF.

Examples:

Query current baud rate: @253BR?;FF
Change baud rate to 19200: @253BR!19200;FF

where:

@ attention character
253 <device address>
BR? <query>? (for query syntax)
BR!19200 <command>!<parameter> (for command syntax)
;FF terminator
Response Syntax (ACK/NAK)

The ASCII characters 'ACK' or 'NAK' preface the query or command response string. The ACK sequence signifies the message was processed successfully. The NAK sequence indicates there was an error.

The response to a query or a successful command is:
@<device address>ACK<data>;FF

The response to a message with an error is:
@<device address>NAK<NAK code>;FF

Examples:

ACK response: @253ACK9600;FF (baud rate changed to 9600)
NAK response: @253NAK160;FF (command had an error — possibly a typo)

The following list provides descriptions of the NAK codes that may be returned.

<table>
<thead>
<tr>
<th>Error</th>
<th>NAK Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unrecognized message</td>
<td>160</td>
</tr>
<tr>
<td>Invalid argument</td>
<td>169</td>
</tr>
<tr>
<td>Value out of range</td>
<td>172</td>
</tr>
<tr>
<td>Command/query character invalid (! or ?)</td>
<td>175</td>
</tr>
<tr>
<td>Control setpoint enabled</td>
<td>195</td>
</tr>
<tr>
<td>Write to nonvolatile memory failed</td>
<td>196</td>
</tr>
<tr>
<td>Read from nonvolatile memory failed</td>
<td>197</td>
</tr>
<tr>
<td>Not in measure pressure mode</td>
<td>198</td>
</tr>
<tr>
<td>Pressure too high for degas</td>
<td>199</td>
</tr>
<tr>
<td>Calibration incomplete</td>
<td>100-115</td>
</tr>
<tr>
<td>Not in Calibration Mode</td>
<td>178</td>
</tr>
<tr>
<td>Write To EE fail</td>
<td>300-399</td>
</tr>
<tr>
<td>Read from EE fail</td>
<td>400-499</td>
</tr>
</tbody>
</table>
RS232/RS-485 Command Set

The query and command formats shown in this section are examples; the values may vary for the user’s installation.

Set Up Commands

Active Filament – AF

The AF command returns which of the Hot Cathode sensor’s two filaments is active, or selects between the sensor’s two filaments. Related commands: Filament Status – FS and Transducer Status – T (Status Commands section); Filament Power – FF (Pressure Measurement and Degas Commands section). See the Maintenance and Troubleshooting section for information on filaments.

Values: 1, 2 (default: 1)

Query: @001AF?;FF
Query Response: @001ACK2;FF
Command: @001AF!2;FF
Command Response: @001ACK2;FF

Address – AD

The AD command returns or sets the 979B address. NOTE: If multiple devices are installed on the system, an address query using 254 (shown in the query example below) cannot determine the address of a single device. Addressing is best performed when communicating with a single device if the address of that device is unknown.

Values: 001 to 253 (default: 253)

Query: @254AD?;FF
Query Response: @001ACK001;FF
Command: @001AD!002;FF
Command Response: @002ACK002;FF
Baud Rate – BR

The BR command returns or sets the baud rate of the communications protocol. The 979B responds to this command at the present baud rate; however, the user will need to change the baud rate on the host to ensure future commands are sent at the same rate.

Values: 4800, 9600, 19200, 38400, 57600, 115200
(default: 9600)

Query: `@001BR?;FF`

Query Response: `@001ACK9600;FF`

Command: `@001BR!19200;FF`

Command Response: `@001ACK19200;FF`

Analog Output - DAC

The DAC command returns or sets the analog output scale: DAC1 is 0.5V/decade of pressure; DAC2 is 0.75V/decade. Refer to analog output section.

Values: 1, 2

Query: `@001DAC?;FF`

Query Response: `@001ACKDAC1;FF`

Command: `@001DAC!2;FF`

Command Response: `@001ACKDAC2;FF`

Emission Current – EC

The EC command returns or sets the sensor's emission current to 20uA or Auto range (20uA above 1x10^-4 and 1mA below 1x10^-4 Torr).

Values: 20UA and AUTO for commands; 20UA, 1MA AUTO, and 20UA AUTO for responses
(default: AUTO).

Query: `@001EC?;FF`

Query Response: `@001ACK1MA AUTO;FF`

Command: `@001EC!AUTO;FF`

Command Response: `@001ACK20UA AUTO;FF`

Factory Default – FD

The FD command sets all 979B user calibration values to the factory default. (VAC,ATM,ATZ,ATS,ATD)

Command: `@001FD!;FF`

Command Response: `@001ACKFD;FF`
RS Delay – RSD

The RSD command enables or disables a delay of up to 5 milliseconds between receive and transmit mode. This is useful if communication issues arise with in the RS485 installation.

Values: OFF, ON (default ON)

Query: @001RSD?;FF
Query Response: @001ACKOFF;FF
Command: @001RSDION;FF
Command Response: @001ACKON;FF

Test RS485 – TST

The TST command flashes the filament power LED ON and OFF, in order to visually identify the unit.

Values: ON, OFF

Query: @001TST?;FF
Query Response: @001ACKOFF;FF
Command: @001TSTION;FF
Command Response: @001ACKON;FF

Unit – U

The U command returns or sets the pressure unit to Torr, mBar, or Pascal. The units affect all pressure measurements, including set point values and analog output.

Values: Torr, mBar, Pascal (default: Torr)

Query: @001U?;FF
Query Response: @001ACKTORR;FF
Command: @001U!MBAR;FF
Command Response: @001ACKMBAR;FF

User Tag – UT

The UT command returns or sets the user tag label to assign for 979B identification.

Values: Up to 12 ASCII characters

Query: @001UT?;FF
Query Response: @001ACKCHAMBER1;FF
Command: @001UT!CHAMBER2;FF
Command Response: @001ACKCHAMBER2;FF
Status Commands

Device Type – DT
The DT command returns the transducer device type.

Query: @001DT?;FF
Query Response: @001ACKMP-HC 979B;FF

Filament Status – FS
The FS command returns the operating status of the active filament. To select between the sensor’s two filaments, see Active Filament – AF (Set Up Commands section). To turn the filament ON or OFF, see Filament Power – FP (Pressure Measurement and Degas Commands section).

Values: ON, OFF

Query: @001FS?;FF
Query Response: @001ACKON;FF

Firmware Version – FV
The FV command returns the firmware version.

Query: @001FV?;FF
Query Response: @001ACK1.00;FF

Hardware Version MicroProcessor PCB – HV
The HV command returns the MicroPirani hardware version.

Query: @001HV?;FF
Query Response: @001ACK1.00;FF
Manufacturer – MF

The MF command returns the 979B manufacturer.

Query: @001MF?;FF
Query Response: @001ACKMKS/HPS-PRODUCTS;FF

Model – MD

The MD command returns the 979B model number.

Query: @001MD?;FF
Query Response: @001ACK979B;FF

Serial Number – SN

The SN command returns the 979B serial number.

Query: @001SN?;FF
Query Response: @001ACK0000012345;FF

Time On – TIM1, TIM2

The TIM1 command returns the number of hours the transducer has been on. The TIM2 command returns the number of hours each filament of the Hot Cathode has been on, or clears the time on both filaments if the user has replaced the sensor.

Values: CLR

Query: @001TIM1?;FF
Query Response: @001ACK000000024;FF
Command: @001TIM2!CLR;FF
Command Response: @001ACKCLR;FF

Transducer Status – T

The T command returns the current status of the Hot Cathode. Related commands: **Active Filament – AF** (Set Up Commands section), **Set Point Value – SP1, SP2, SP3** and **Hysteresis Value – SH1, SH2, SH3** (Set Point Commands section).

Values:
F = Filament fault, filament cannot turn on
G = Hot Cathode on
O = OK, no errors to report
P = Pressure fault, system pressure above protect pressure
W = Hot Cathode is turning on; pressure reading not valid (when Hot Cathode is turned on, a few seconds elapse before pressure reading is valid).
D = Degas ON

Query: @001T?;FF
Query Response: @001ACKO;FF
Transducer Temperature – TEM

The TEM1 command returns the MicroPirani on-chip sensor temperature in °C. The TEM2 command returns the microprocessor temperature in °C. If the temperature exceeds 70°C, the ambient temperature may be too high or the filament power is too high (nominal temperature rise is 30°C above ambient).

Query: @001TEM1?;FF
Query Response: @001ACK2.10E+1;FF

Pressure Measurement and Degas Commands

Filament Power – FP

⚠️ CAUTION: Never turn on filament power when system pressure is above 5x10⁻² Torr! Sensor damage will result!

The FP command turns the filament either ON or OFF. To select between the sensor’s two filaments, see Active Filament – AF (Set Up Commands section). To query the ON/OFF status of the filament, use the Filament Status – FS command, or the Transducer Status – T command (Status Commands section). NOTE: This command works only when the control set point is disabled (see Enable Set Point – ENC in the Set Point Commands section).

Values: ON, OFF (default: OFF)

Command: @001FP!ON;FF
Command Response: @001ACKON;FF

Degas Power – DG

⚠️ Read the Degassing the Sensor section of this manual before using the DG command.

The DG command turns degas ON or OFF, or indicates if the Hot Cathode is in degas mode. Degas turns off automatically after 30 minutes, but can be turned off sooner. Pressure must be below 1x10⁻⁵ Torr for the DG command to work.

Values: ON, OFF (default: OFF)

Query: @001DG?;FF
Query Response: @001ACKOFF;FF
Command: @001DG!ON;FF
Command Response: @001ACKON;FF
Pressure Reading – PR1, PR2, PR3

The pressure reading command returns the measured pressure from either the MicroPirani (PR1), the Hot Cathode (PR2) or a combination of all (PR3). For pressure from ATM uP (PR1) provides the reading down to 1×10^{-3} Torr. Below 1×10^{-4} the Hot Cathode (PR2) provides the reading.

Query: @001PR1?;FF
Query Response: @001ACK1.23E-2;FF

Set Point Commands

The 979B has three independent set point relays for control. The relay set point is based on the absolute pressure reported by the PR3 command (see the Pressure Reading command on the previous page). If the relays are operating in the differential mode then the set point is based on the Pressure reported by PR4.

The 979B has three independent set point mechanical relays for process control or surveillance. The enable command provides control for activating the set point. The 979B automatically sets and overwrites any user setting of the hysteresis value when a setpoint value is entered or the setpoint direction is changed. The correct procedure for setting up the setpoint parameters are:

1. Enter setpoint value: SPx
2. Select set point direction: SDx
3. Enter setpoint hysteresis value, if other than +/- 10% of setpoint value is required: SHx
4. Enable and assign setpoint: ENx
Set Point Value – SP1, SP2, SP3

The set point value command returns or sets the set point value. The set point value is the pressure either below or above which the set point relay will be energized (i.e., N.O. and C contacts will be closed). The direction of the set point (ABOVE or BELOW) is configured using the Set Point Direction – SD1, SD2, SD3 command. The set point must be enabled for the set point command to function (see the Enable Set Point – EN1, EN2, EN3 command).

Values: Two- or three-digit scientific notation
(default: 1.00E0 Torr)

Query: @001SP1?;FF
Query Response: @001ACK1.00E-2;FF
Command: @001SP1!1.00E-3;FF
Command Response: @001ACK1.00E-3;FF

Hysteresis Value – SH1, SH2, SH3

The hysteresis value command returns or sets the pressure value at which the set point relay will be de-energized (i.e., N.O. and C contacts will be open). The hysteresis value should always be higher than the set point value if the setpoint direction is below. The hysteresis value should always be lower that the setpoint value if set point direction is above. If the hysteresis and set point are the same value, or nearly the same value, the relay may chatter when the system pressure is near the set point.

Values: Two- or three-digit scientific notation
(default: 1.00E0 Torr)

Query: @001SH1?;FF
Query Response: @001ACK1.10E-2;FF
Command: @001SH1!1.10E-3;FF
Command Response: @001ACK1.10E-3;FF

Set Point Direction – SD1, SD2, SD3

The set point direction command returns or sets the direction of the set point relay. If the value is BELOW, then the relay will be energized below the set point value. (See Set Point Value – SP1, SP2, SP3 and Hysteresis Value – SH1, SH2, SH3)

Values: BELOW, ABOVE (default: BELOW)

Query: @001SD1?;FF
Query Response: @001ACKBELOW;FF
Command: @001SD1!ABOVE;FF
Command Response: @001ACKABOVE;FF
Enable Set Point – EN1, EN2, EN3

The enable set point command returns enable status, or enables/disables the set point relay.

Values: ON, OFF

Query: @001EN1?;FF
Query Response: @001ACKOFF;FF
Command: @001EN1!ON;FF
Command Response: @001ACKON;FF

Set Point Status – SS1, SS2, SS3

The set point status command returns the status of the set point relay.

Values: SET, CLEAR

Query: @001SS1?;FF
Query Response: @001ACKCLEAR;FF

Enable Control Set Point – ENC

The ENC command allows the MicroPirani to turn the Hot Cathode on or off. If the value is ON, decreasing pressure turns the Hot Cathode on at 3×10^{-3} Torr and increasing pressure turns the Hot Cathode off at 5×10^{-3} Torr. However, if BNC is off, hot cathode will turn itself off when PR2 is at 5×10^{-2} Torr. Hot cathode can be turned on only by FP!ON command.

Values: ON, OFF (default: ON)

Query: @001ENC?;FF
Query Response: @001ACKON;FF
Command: @001ENC!OFF;FF
Command Response: @001ACKOFF;FF

Protect Set Point – PRO

The PRO command enables or disables the protect set point. The protect set point is the pressure where the Hot Cathode will turn itself off to prevent sensor damage and is valid during degas. NOTE: Protect set point is fixed at 5×10^{-2} Torr.

Values: ON, OFF

Query: @001PRO?;FF
Query Response: @001ACKON;FF
Command: @001PRO!OFF;FF
Command Response: @001ACKOFF;FF
Calibration Commands

Atmospheric Calibration – ATM

The ATM command sets full scale readout for the MicroPirani. Vent the transducer to atmospheric pressure before performing atmospheric calibration.

👉 For best results, leave the MicroPirani at the calibration pressure for at least 20 minutes before using the ATM command.

Values: Pressure value in scientific notation

Command: @001ATM!7.60E+2;FF
Command Response: @001ACK7.60E+2;FF

Vacuum Calibration – VAC

The VAC command zeroes the MicroPirani readout. Evacuate the transducer to a pressure below 1×10^{-4} Torr before performing vacuum calibration.

NOTE: The MicroPirani performs the vacuum calibration automatically when the Hot Cathode pressure is below 1×10^{-4} Torr.

👉 For best results, leave the MicroPirani at the calibration pressure for at least 20 minutes before using the VAC command.

Command: @001VAC!;FF
Command Response: @001ACK1.00e-5;FF

Gas Type Calibration – GT

The GT command sets gas type for measurement on the MicroPirani. The MicroPirani measures pressure based on thermal conductivity of the gas; using the gas calibration compensates for gas errors.

Values: NITROGEN, AIR, ARGON, HYDROGEN, HELIUM, H2O (default: NITROGEN)

Query: @001GT?;FF
Query Response: @001ACKAIR;FF
Command: @001GT!NITROGEN;FF
Command Response: @001ACKNITROGEN;FF
Gas Correction – GC

The GC command returns or sets the Hot Cathode gauge’s sensitivity for use with gasses other than air or nitrogen. For example, if Argon is the system gas then the gas correction value would be 1.29. See the Gas Correction Factor Table for values.

Values: 0.10 to 50.1 (default: 1)

Query: @001GC?;FF
Query Response: @001ACK1.00;FF
Command: @001GC/1.50;FF
Command Response: @001ACK1.50;FF
Analog Output

The 979B Transducer analog voltage signal pins are 5 (+) and 6 (-). Connect them to a differential input. The transducer provides 2 analog output scales: DAC1 is 0.5V/decade; DAC2 is 0.75V/decade, DAC1 is the default.

Do not connect the negative side of the analog output (pin 6) to the power supply return (pin 4) or to any other ground. The voltage drop from the supply current will produce errors in the analog output voltage. The longer the cable, the worse the error will be.

The graph below shows the correlation of DAC1 analog output to pressure.

To calculate pressure from voltage for DAC1: \(P = 10^{(2V-11)} \)
DAC1 Pressure to Voltage Table

<table>
<thead>
<tr>
<th>Pressure (Torr)</th>
<th>Volts</th>
<th>Pressure (Torr)</th>
<th>Volts</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0E-10</td>
<td>0.50</td>
<td>8.0E-04</td>
<td>3.95</td>
</tr>
<tr>
<td>2.0E-10</td>
<td>0.65</td>
<td>1.0E-03</td>
<td>4.00</td>
</tr>
<tr>
<td>4.0E-10</td>
<td>0.80</td>
<td>2.0E-03</td>
<td>4.15</td>
</tr>
<tr>
<td>8.0E-10</td>
<td>0.95</td>
<td>4.0E-03</td>
<td>4.30</td>
</tr>
<tr>
<td>1.0E-09</td>
<td>1.00</td>
<td>8.0E-03</td>
<td>4.45</td>
</tr>
<tr>
<td>2.0E-09</td>
<td>1.15</td>
<td>1.0E-02</td>
<td>4.50</td>
</tr>
<tr>
<td>4.0E-09</td>
<td>1.30</td>
<td>2.0E-02</td>
<td>4.65</td>
</tr>
<tr>
<td>8.0E-09</td>
<td>1.45</td>
<td>4.0E-02</td>
<td>4.80</td>
</tr>
<tr>
<td>1.0E-08</td>
<td>1.50</td>
<td>8.0E-02</td>
<td>4.95</td>
</tr>
<tr>
<td>2.0E-08</td>
<td>1.65</td>
<td>1.0E-01</td>
<td>5.00</td>
</tr>
<tr>
<td>4.0E-08</td>
<td>1.80</td>
<td>2.0E-01</td>
<td>5.15</td>
</tr>
<tr>
<td>8.0E-08</td>
<td>1.95</td>
<td>4.0E-01</td>
<td>5.30</td>
</tr>
<tr>
<td>1.0E-07</td>
<td>2.00</td>
<td>8.0E-01</td>
<td>5.45</td>
</tr>
<tr>
<td>2.0E-07</td>
<td>2.15</td>
<td>1.0E+00</td>
<td>5.50</td>
</tr>
<tr>
<td>4.0E-07</td>
<td>2.30</td>
<td>2.0E+00</td>
<td>5.65</td>
</tr>
<tr>
<td>8.0E-07</td>
<td>2.45</td>
<td>4.0E+00</td>
<td>5.80</td>
</tr>
<tr>
<td>1.0E-06</td>
<td>2.50</td>
<td>8.0E+00</td>
<td>5.95</td>
</tr>
<tr>
<td>2.0E-06</td>
<td>2.65</td>
<td>1.0E+01</td>
<td>6.00</td>
</tr>
<tr>
<td>4.0E-06</td>
<td>2.80</td>
<td>2.0E+01</td>
<td>6.15</td>
</tr>
<tr>
<td>8.0E-06</td>
<td>2.95</td>
<td>4.0E+01</td>
<td>6.30</td>
</tr>
<tr>
<td>1.0E-05</td>
<td>3.00</td>
<td>8.0E+01</td>
<td>6.45</td>
</tr>
<tr>
<td>2.0E-05</td>
<td>3.15</td>
<td>1.0E+02</td>
<td>6.50</td>
</tr>
<tr>
<td>4.0E-05</td>
<td>3.30</td>
<td>2.0E+02</td>
<td>6.65</td>
</tr>
<tr>
<td>8.0E-05</td>
<td>3.45</td>
<td>4.0E+02</td>
<td>6.80</td>
</tr>
<tr>
<td>1.0E-04</td>
<td>3.50</td>
<td>8.0E+02</td>
<td>6.95</td>
</tr>
<tr>
<td>2.0E-04</td>
<td>3.65</td>
<td>1.0E+03</td>
<td>7.00</td>
</tr>
<tr>
<td>4.0E-04</td>
<td>3.80</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
To calculate Pressure from Voltage for DAC2:

\[P = 10^{\left \frac{V - 7.75}{.75} \right} \]
DAC2 Pressure to Voltage Table

<table>
<thead>
<tr>
<th>Volts</th>
<th>Torr</th>
<th>Volts</th>
<th>Torr</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7742</td>
<td>3.7e-10</td>
<td>5.4273</td>
<td>6.0E-04</td>
</tr>
<tr>
<td>0.9273</td>
<td>6.0e-10</td>
<td>5.5000</td>
<td>7.5E-04</td>
</tr>
<tr>
<td>1.0000</td>
<td>7.5e-10</td>
<td>5.7258</td>
<td>1.5E-03</td>
</tr>
<tr>
<td>1.2258</td>
<td>1.5E-09</td>
<td>5.9515</td>
<td>3.0E-03</td>
</tr>
<tr>
<td>1.4515</td>
<td>3.0E-09</td>
<td>6.1773</td>
<td>6.0E-03</td>
</tr>
<tr>
<td>1.6773</td>
<td>6.0E-09</td>
<td>6.2500</td>
<td>7.5E-03</td>
</tr>
<tr>
<td>1.7500</td>
<td>7.5E-09</td>
<td>6.4758</td>
<td>1.5E-02</td>
</tr>
<tr>
<td>1.9758</td>
<td>1.5E-08</td>
<td>6.7015</td>
<td>3.0E-02</td>
</tr>
<tr>
<td>2.2015</td>
<td>3.0E-08</td>
<td>6.9273</td>
<td>6.0E-02</td>
</tr>
<tr>
<td>2.4273</td>
<td>6.0E-08</td>
<td>7.0000</td>
<td>7.5E-02</td>
</tr>
<tr>
<td>2.5000</td>
<td>7.5E-08</td>
<td>7.2258</td>
<td>1.5E-01</td>
</tr>
<tr>
<td>2.7258</td>
<td>1.5E-07</td>
<td>7.4515</td>
<td>3.0E-01</td>
</tr>
<tr>
<td>2.9515</td>
<td>3.0E-07</td>
<td>7.6773</td>
<td>6.0E-01</td>
</tr>
<tr>
<td>3.1773</td>
<td>6.0E-07</td>
<td>7.7500</td>
<td>7.5E-01</td>
</tr>
<tr>
<td>3.2500</td>
<td>7.5E-07</td>
<td>7.9758</td>
<td>1.5E+00</td>
</tr>
<tr>
<td>3.4758</td>
<td>1.5E-06</td>
<td>8.2015</td>
<td>3.0E+00</td>
</tr>
<tr>
<td>3.7015</td>
<td>3.0E-06</td>
<td>8.4273</td>
<td>6.0E+00</td>
</tr>
<tr>
<td>3.9273</td>
<td>6.0E-06</td>
<td>8.5000</td>
<td>7.5E+00</td>
</tr>
<tr>
<td>4.0000</td>
<td>7.5E-06</td>
<td>8.7258</td>
<td>1.5E+01</td>
</tr>
<tr>
<td>4.2258</td>
<td>1.5E-05</td>
<td>8.9515</td>
<td>3.0E+01</td>
</tr>
<tr>
<td>4.4515</td>
<td>3.0E-05</td>
<td>9.1773</td>
<td>6.0E+01</td>
</tr>
<tr>
<td>4.6773</td>
<td>6.0E-05</td>
<td>9.2500</td>
<td>7.5E+01</td>
</tr>
<tr>
<td>4.7500</td>
<td>7.5E-05</td>
<td>9.4758</td>
<td>1.5E+02</td>
</tr>
<tr>
<td>4.9758</td>
<td>1.5E-04</td>
<td>9.7015</td>
<td>3.0E+02</td>
</tr>
<tr>
<td>5.2015</td>
<td>3.0E-04</td>
<td>9.9273</td>
<td>6.0E+02</td>
</tr>
<tr>
<td>10.0000</td>
<td></td>
<td></td>
<td>7.5E+02</td>
</tr>
</tbody>
</table>
Sensitivities Relative to Nitrogen

If using a gas other than air/nitrogen in the system, then the user will need to change the gas correction factor for the Hot Cathode to provide an accurate pressure reading (see Gas Correction – GC in the Set Up Commands section). The table below shows GC values for some commonly used gasses. These correction factors are all relative to the nitrogen factor (which in the case of the Hot Cathode is 1). For example, if using Argon gas in the system, use the GC command as follows: @253GC!1.29;FF.

<table>
<thead>
<tr>
<th>Gas</th>
<th>Symbol</th>
<th>Gas Correction Factor (GC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td>Argon</td>
<td>Ar</td>
<td>1.29</td>
</tr>
<tr>
<td>Carbon Dioxide</td>
<td>CO₂</td>
<td>1.42</td>
</tr>
<tr>
<td>Deuterium</td>
<td>D₂</td>
<td>0.35</td>
</tr>
<tr>
<td>Helium</td>
<td>He</td>
<td>0.18</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>H₂</td>
<td>0.46</td>
</tr>
<tr>
<td>Krypton</td>
<td>Kr</td>
<td>1.94</td>
</tr>
<tr>
<td>Neon</td>
<td>Ne</td>
<td>0.30</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>N₂</td>
<td>1.00</td>
</tr>
<tr>
<td>Nitrogen Oxide</td>
<td>NO</td>
<td>1.16</td>
</tr>
<tr>
<td>Oxygen</td>
<td>O₂</td>
<td>1.01</td>
</tr>
<tr>
<td>Sulfur Hexafluoride</td>
<td>SF₆</td>
<td>2.50</td>
</tr>
<tr>
<td>Water</td>
<td>H₂O</td>
<td>1.12</td>
</tr>
<tr>
<td>Xenon</td>
<td>Xe</td>
<td>2.87</td>
</tr>
</tbody>
</table>

See GT command for correcting the MicroPirani reading for gases other than Nitrogen.
Pressure reading gas dependence: The MicroPirani is based on measurement of thermal conductivity; therefore, the MicroPirani readout depends on the gas type and concentration. The MicroPirani is calibrated for Nitrogen gas, and will read a higher pressure when exposed to atmospheric air.

The Hot Cathode sensor is based on measurement of gas ionization; therefore, the Hot Cathode readout also depends on the gas type and concentration.
Degassing the Sensor

Sensitivity of the Hot Cathode sensor may drift if the sensor elements become contaminated with system process gasses. This becomes more of a problem the lower the pressure being measured (i.e., \(\leq 10^{-8} \) Torr). To rid the sensor elements of the excess system process gasses, periodically degas the sensor. How frequently to run degas varies for each system installation.

The Hot Cathode uses Electron Bombardment (EB) degas to remove adsorbed gas from the sensor. Pressure can still be measured during degas, but due to the gas rapidly coming off the sensor elements, sensor pressure may be significantly higher than system pressure.

![Warning] Degas is only activated if the indicated pressure is below \(1 \times 10^{-6} \) Torr.

Set points are active during degas.

When degas is turned on, it is likely that the sensor pressure will increase to values exceeding \(1 \times 10^{-4} \) Torr. When the indicated pressure exceeds \(1 \times 10^{-4} \) Torr, degas power is turned off momentarily. Degas automatically turns on again when the indicated pressure drops back below \(1 \times 10^{-4} \) Torr (patented feature).

The temperature inside the Hot Cathode increases during degas; for electronic component life, keep degas time as short as possible. Degas operation automatically terminates after 30 minutes. When the sensor’s indicated pressure has dropped back near pre-degas values, there is not much benefit to further degas operation; therefore, degas should be terminated.

![Warning] Do not operate in degas mode more than 30 minutes every 4 hours.
Maintenance and Troubleshooting

Maintenance and Troubleshooting Table

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Possible Cause/Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>No response to RS232 or RS-485 commands</td>
<td>- Attention character (@) missing</td>
</tr>
<tr>
<td></td>
<td>- Address incorrect</td>
</tr>
<tr>
<td></td>
<td>- Termination characters (;FF) missing</td>
</tr>
<tr>
<td></td>
<td>- Baud rate incorrect</td>
</tr>
<tr>
<td></td>
<td>- Electrical connections missing or incorrect</td>
</tr>
<tr>
<td></td>
<td>Note: If baud rate and electrical connections are correct, then @254;FF should give the response @253NAK160;FF (the address may be different from 253).</td>
</tr>
<tr>
<td>MicroPirani vacuum pressure reading too high/too low or zero adjustment was made at the wrong pressure</td>
<td>Adjust zero calibration using the Vacuum Calibration – VAC command.</td>
</tr>
<tr>
<td>Set point does not trip</td>
<td>- Set point not enabled</td>
</tr>
<tr>
<td></td>
<td>- Set point hysteresis value not set to proper value</td>
</tr>
<tr>
<td></td>
<td>- Set point direction is different from what the user expects</td>
</tr>
<tr>
<td></td>
<td>- Connector miswired</td>
</tr>
<tr>
<td></td>
<td>- Control set point not enabled</td>
</tr>
<tr>
<td>No analog output voltage</td>
<td>- Power supply turned off</td>
</tr>
<tr>
<td></td>
<td>- Electrical connections missing or incorrect</td>
</tr>
<tr>
<td></td>
<td>- Indicated pressure below 1.0E-10</td>
</tr>
<tr>
<td>Power LED not on</td>
<td>Connector miswired, +24 V not applied</td>
</tr>
<tr>
<td>Filament light does not come on/stay on</td>
<td>- System pressure is above protect or control set point value</td>
</tr>
<tr>
<td></td>
<td>- +24 V cannot supply adequate current</td>
</tr>
<tr>
<td></td>
<td>- Sensor filament has failed; try other filament</td>
</tr>
<tr>
<td></td>
<td>- Control Set Point not enabled</td>
</tr>
<tr>
<td>Will not indicate pressures below 10⁻⁵ Torr</td>
<td>- Control Set Point not enabled</td>
</tr>
</tbody>
</table>
Cleaning the 979B Transducer Case and Sensor Tube

The finish of the 979B Transducer case is designed to resist many laboratory solvents; clean the case with water or alcohol. Take care to prevent a liquid from entering the electronic enclosure.

Roughing pump oils and other fluids condensing or decomposing on the heated filament can contaminate the sensors elements. This or other elements could cause the calibration to change, especially at low pressure.

Do not attempt to clean the sensor tube. Trying to clean it may cause permanent damage to the sensor element.

Replace the transducer if it becomes contaminated.

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Possible Cause/Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot Cathode pressure reading incorrect</td>
<td>- Transducer not located properly to measure system pressure</td>
</tr>
<tr>
<td></td>
<td>- Gas Correction factor not correct for the gas in the system</td>
</tr>
<tr>
<td></td>
<td>- Sensor contaminated (degasing the sensor may fix this)</td>
</tr>
<tr>
<td></td>
<td>- Leak in the vacuum system</td>
</tr>
<tr>
<td>Degas does not start</td>
<td>System pressure above 1×10^{-5} Torr when degas command is sent.</td>
</tr>
</tbody>
</table>
Accessories

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector Kit (female 15-pin D-sub)</td>
<td>100008104</td>
</tr>
<tr>
<td>Operation and Maintenance Manual</td>
<td>100014647</td>
</tr>
</tbody>
</table>

Centering Ring Part Numbers With 25um Filter and Viton O-ring

* NW16KF 100014510
* NW25KF 100014515
* NW40KF 100014520

* Recommended on inlet flange of 979B to protect sensor from particulates when used in harsh environments.

PDR900 Single Channel Power Supply and Display PDR900-11-05

Cable PDR900 to 979B, 10ft (3m) 100013620
Appendix: How the 979B Transducer Works

The Series 979B Transducer is a combination of two different types of pressure sensors: the Hot Cathode and the MicroPirani. The Hot Cathode sensor measures pressure indirectly from ion currents, which is proportional to gas density and pressure. The MicroPirani sensor measures pressure indirectly as a heat-loss manometer that infers the pressure of a gas by measuring thermal loss from a heated wire.

Hot Cathode Ionization Sensor

Hot cathode ionization sensors use thermionic electrons—electrons emitted from a hot filament (emission current)—to create ions in a defined volume. In their passage from the cathode through the gas volume, the electrons collide with gas atoms or molecules to form ions. The number of gas molecules ionized depends on the energy of the ionizing electrons, typically about 150 eV, and the ionization probabilities of the constituent gases. The total amount of ionization is related to the molecular concentration. The ions are accelerated to a collector electrode, where they create a current (collector current) in a circuit, which includes an electrometer. The measured current is proportional to the gas density, which in turn is directly related to the pressure, provided that other parameters like temperature are held constant. The response to pressure changes in such a device is virtually instantaneous.

Mathematically the pressure is related to ion current, or collector current, by the relationship:

\[P = \frac{I_c}{K \times I_e} \]

where:

- \(P \) is pressure (e.g., Torr),
- \(I_c \) is collector current (Amps),
- \(I_e \) is the emission current (Amps),
- \(K \) is a sensitivity constant (e.g., in the case of the Hot Cathode, the sensitivity is 12/Torr).

The sensitivity (\(K \)) is dependent on gauge geometry and electrode potentials.
Pirani Sensor

The Pirani sensor is a type of thermal conductivity sensor. It consists of a hot wire suspended from supports. This wire loses thermal energy in three ways:

- Thermal conduction through the gas, which is pressure dependent
- End loss to the supports
- Radiation to surrounding surfaces

Pirani sensors use pressure-dependent gas transport from a hot wire to measure pressure. End loss and radiation loss act as error signals and determine the low pressure limit of the sensor. Optimizing operational parameters of the wire length and diameter, thermal emissivity, thermal conductivity, and wire temperature can decrease end loss and radiation errors. A standard Pirani sensor usually has a lower reading limit of about 10^{-3} Torr, due to signal lost by end loss and radiation error.
MicroPirani Sensor

The MicroPirani sensor functions the same as a traditional Pirani sensor, but instead of a heated wire, a thin film Nickel resistive element is deposited onto a silicon substrate. This heated filament is maintained at a constant temperature above the ambient temperature of the substrate. A solid-state MicroPirani sensor has several advantages over a wire based Pirani sensor. The operational parameters are controlled and optimized to decrease the end loss and radiation errors, the integrated temperature sensors improve the temperature compensation performance, and the small geometry decreases the thermal lag time, ensuring faster response time. These improvements allow the MicroPirani sensor to operate down to 10^{-5} Torr, two decades lower than traditional Pirani sensors. The smaller distance between the heated filament and the cold substrate increases the pressure measurement range in the higher-pressure regions.
Warranty

Extent of the Warranty
MKS Instruments, Inc. (MKS), HPS® Products, warrants the HPS® Products Series 999 Quattro Multisensor Transducer and its accessories to be free from defects in materials and workmanship for one (1) year from the date of shipment by MKS or authorized representative to the original purchaser (PURCHASER). Any product or parts of the product repaired or replaced by MKS under this warranty are warranted only for the remaining unexpired part of its one (1) year original warranty period. After expiration of the applicable warranty period, the PURCHASER shall be charged MKS’ current prices for parts and labor, plus any transportation for any repairs or replacement.

ALL EXPRESS AND IMPLIED WARRANTIES, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE LIMITED TO THE WARRANTY PERIOD. NO WARRANTIES, EXPRESS OR IMPLIED, WILL APPLY AFTER THIS PERIOD.

Warranty Service
The obligations of MKS under this warranty shall be at its option: (1) to repair, replace, or adjust the product so that it meets applicable product specifications published by MKS or (2) to refund the purchase price.

What is Not Covered
The product is subject to above terms only if located in the country of the seller from whom the product was purchased. The above warranties do not apply to:
I. Damages or malfunctions due to failure to provide reasonable and necessary maintenance in accordance with MKS operating instructions.
II. Damages or malfunctions due to chemical or electrolytic influences or use of the product in working environments outside the specification.
III. Fuses and all expendable items which by their nature or limited lifetime may not function for a year. If such items fail to give reasonable service for a reasonable period of time within the warranty period of the product, they will, at the option of MKS, be repaired or replaced.
IV. Defects or damages caused by modifications and repairs effected by the original PURCHASER or third parties not authorized in the manual.

Condition of Returned Products
MKS will not accept for repair, replacement, or credit any product which is asserted to be defective by the PURCHASER, or any product for which paid or unpaid service is desired, if the product is contaminated with potentially corrosive, reactive, harmful, or radioactive materials, gases, or chemicals. When products are used with toxic chemicals, or in an atmosphere that is dangerous to the health of humans, or is environmentally unsafe, it is the responsibility of the PURCHASER to have the product cleaned by an independent agency skilled and approved in the handling and cleaning of contaminated materials before the product will be accepted by MKS for repair and/or replacement. In the course of implementing this policy, MKS Customer Service Personnel may inquire of the PURCHASER whether the product has been contaminated with or exposed to potentially corrosive, reactive, harmful, or radioactive materials, gases, or chemicals when the PURCHASER requests a return authorization. Not with standing such inquiries, it is the responsibility of the PURCHASER to ensure that no products are returned to MKS which have been contaminated in the aforementioned manner.

Other Rights and Remedies
I. These remedies are exclusive. HPS® SHALL NOT BE LIABLE FOR CONSEQUENTIAL DAMAGES, FOR ANTICIPATED OR LOST PROFITS, INCIDENTAL DAMAGES OR LOSS OF TIME, OR OTHER LOSSES INCURRED BY THE PURCHASER OR BY ANY THIRD PARTY IN CONNECTION WITH THE PRODUCT COVERED BY THIS WARRANTY, OR OTHERWISE. Some states do not allow exclusion or limitation of incidental or consequential damage or do not allow the limitation on how long an implied warranty lasts. If such laws apply, the limitations or exclusions expressed herein may not apply to PURCHASER.
II. Unless otherwise explicitly agreed in writing, it is understood that these are the only written warranties given by HPS®. Any statement made by any persons, including representatives of MKS, which are inconsistent or in conflict with the terms of the warranty shall not be binding on MKS unless reduced to writing and approved by an authorized officer of MKS.
III. This warranty gives PURCHASER specific legal rights, and PURCHASER may also have other rights which vary from state to state.
IV. For MKS products sold outside of the U. S., contact your MKS representative for warranty information and service.

Warranty Performance
To obtain warranty satisfaction, contact the following: MKS Instruments, Inc., HPS® Products, 5330 Sterling Drive, Boulder, CO 80301, USA, at phone number 1-303-449-9861. You may be required to present proof of original purchase.