Leybold

Roots Vacuum Pumps

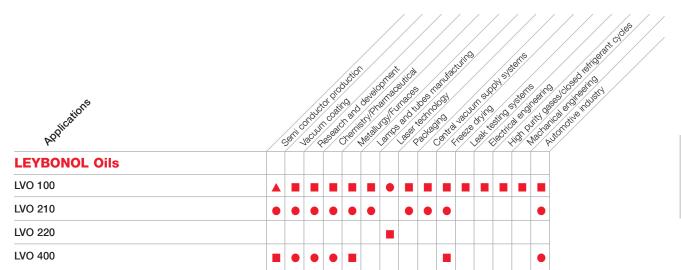
RUVAC Roots Vacuum Pumps

Contents

Roots Vacuum Pumps

General

Applications and Accessories for RUVAC Pumps
Oil for RUVAC pumps, for different fields of application
Oil for RUVAC pumps, for different pump types
General Information on Roots Vacuum Pumps
Types1
Products
RUVAC WA/WAU Roots Vacuum Pumps with Air-Cooled Flange-Mounted Motors14
RUVAC WS/WSU Roots Vacuum Pumps with Air-Cooled Canned Motors
RUVAC WH/WHU Roots Vacuum Pumps with Water-Cooled Hermetically Sealed Motors
RUVAC WSLF Roots Vacuum Pumps for Laser Gas Systems
Accessories
Pressure Switches
Temperature Sensor Pt100
Miscellaneous
Services


General

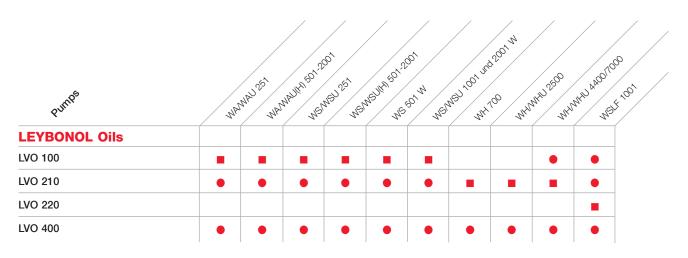
Applications and Accessories for RUVAC Pumps

			Jes Julias Andres	STOOT NEWS	2007	MHU 25001A
Roofs Vacuum Roofs Purings Applications		WAWA	65 NG	7,7	37.//	250012
No.		MA	JAPAN C		100/1	MHI
You briting		1/2 1/2	MS, MS, "	ne ne	Mr	1/2
Applications						
Semiconductor production						
Vacuum coating						
Large scale research						
Chemistry/Pharmaceutical						
Metallurgy/Furnaces					•	
amps and tubes manufacturing						
_aser engineering						•
Packaging						
Central vacuum supply systems						
Freeze drying						
Leak testing systems				•	•	
Electrical engineering						
High purity gases/closed refrigerant cycles						
Mechanical engineering						
Automotive industry		•			•	
Accessories	Page					
Frequency converters	297					
Pressure switches	320					
Temperature sensor Pt100	320	1)				

¹⁾ For ATEX pumps only

Oil for RUVAC Pumps for different fields of application

= Standard


= Possible

▲ = Please contact Leybold

The table only lists general applications. Your specific requirements might be subject to deeper analysis. For further questions, please contact our technical Sales support.

For information on oil specifications please refer to Catalog Part "Oils / Greases / Lubricants LEYBONOL®".

Oil for RUVAC pumps for different pump types

= Standard

= Possible

= Please contact Leybold

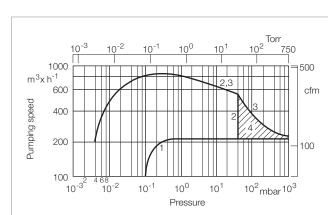
The table only lists general applications. Your specific requirements might be subject to deeper analysis. For further questions, please contact our technical Sales support.

For information on oil specifications please refer to Catalog Part "Oils / Greases / Lubricants LEYBONOL®".

General Information on Roots Vacuum Pumps

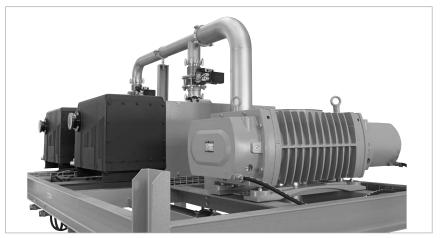
Applications

For many years now Roots vacuum pumps have been well established in the area of vacuum technology. In combination with backing pumps, which compress against the atmosphere, these pumps offer the following advantages:


Shifting the Operating Pressure into the High Vacuum Range

As a rule of the thumb one may say that Roots vacuum pumps are capable of improving the attainable ultimate pressure of a pump system by a factor of 10. With two Roots vacuum pump stages and a corresponding backing pump it is possible to attain pressures in the range down to 10-5 mbar (0.75 x 10-5 Torr). Under certain circumstances this will make the use of additional high vacuum pumps (turbomolecular pumps or diffusion pumps) unnecessary.

Multiplied Pumping Speed


Due to the non-contact rotation of the impellers, Roots vacuum pumps are able to run at higher speeds. Thus a high pumping speed is obtained with a relatively small size pump. Pumping speeds in excess of 1500 m³/h (589 cfm) can only be attained with Roots vacuum pumps.

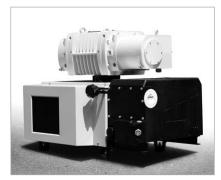
When selecting the right kind of backing pump (sizing) it will be possible to pump large quantities of gas in connection with smaller backing pumps. Energy consumption of such a pump system is much less compared to a single backing pump offering the same pumping speed.

- 1 Pumping speed of the backing pump
- 2 Pumping speed of the Roots pump system without pressure equalization line
- 3 Pumping speed of the Roots pump system with pressure equalization line
- 4 Pumping speed gained by the pressure equalization line

Comparison of pumping speed characteristics with and without pressure equalization line

Pump system with WH 7000 Roots vacuum pump and SOGEVAC SV 630 B rotary vane vacuum pump

The use of Roots vacuum pumps in the area of vacuum technology has resulted in further specializations and improvements:


- Through an integrated bypass (pressure equalization line) it is also possible to utilize the pumping speed of the Roots vacuum pump at high pressures and large quantities of gas at an early stage. This reduces the pumpdown time especially for cyclic operation (see figure "Comparison of pumping speed characteristics with and without pressure equalization line").
- High-purity gases or hazardous gases impose strict requirements on the leak-tightness of the system.

 Canned motors from the WS line or canned motors from the WH line are hermetically sealed. There are no seals in contact with the atmosphere which might be subject to wear. This prevents leaks and failures due to oil leaks. A service life of over 20,000 hours without maintenance is quite common.

- Tolerances and the quality of the balancing combined with forced lubricated bearings and toothed gears permit high speeds and the use of frequency converters. Thus it is possible to attain a high pumping speed while the process is in progress and to reduce the speed when the process has been stopped or while changing the batch. This results in a lower consumption of energy and a longer service life with uncompromised reliability.
- Conversion from vertical to horizontal flow is easily implemented and can be performed at the place where the pump has been installed.
 Thus the pump can be adapted more closely to the operating conditions of your system.

Lately, a further characteristic is gaining prominence: Roots vacuum pumps are capable of compressing the media in the pump chamber without the presence of any further media. This mostly avoids interaction between different media in the pump itself and also in the connected vacuum chamber. Therefore

- the medium which is pumped is not contaminated with lubricants or sealants; complex accessories (exhaust filters, separators, etc.) are not needed;
- the lubricant in the side chambers is hardly affected, so that service life is not reduced;
- backstreaming of oil from the backing pump into the connected vacuum chamber is prevented.

Pump system consisting of RUVAC WH 4400 and SOGEVAC SV 630 B

These characteristics make the Roots vacuum pump attractive for almost all rough and medium vacuum applications.

Semiconductor Technology (RUVAC WH and WS)

In the area of semiconductor technology, Roots vacuum pumps are found in etching processes among others, and in use with dry compressing backing pumps.

The pumping speed of the combination of backing pumps amounts to 200 to 500 m³/h (118 to 295 cfm) and it ensures a cut-in pressure of 10^{-1} mbar (0.75 x 10^{-1} Torr) for the

turbomolecular pump. In the process, corrosive gases need to be pumped together with a high particle count.

Owing to the usage of media which present a health hazard, hermetically sealed pump versions are used. Due to the LVO 400 lubricant filling in the gear, a high degree of media resistance, long service intervals a high reliability and thus very low costs of ownership are attained.

For use in clean rooms, Roots vacuum pumps with a water cooled motor without a motor fan are used.

This type of motor reduces the quantity of heat dissipated to the surroundings to a minimum.

Pump system with WH 7000 Roots vacuum pump and SOGEVAC SV 630 B rotary vane vacuum pump

Central Vacuum Supply Systems

Large Roots vacuum pumps, usually in connection with single-stage rotary vane vacuum pumps serve several consumers of vacuum (packaging machines, for example) at the same time.

The pressure can be controlled in a highly flexible manner through the speed controller of the Roots pump, which allows for a flexible adaptation of the pumping speed. In the case of the RUVAC WH and WS types a significantly higher pumping speed can also be attained by means of a frequency converter compared to operation off the normal mains power.

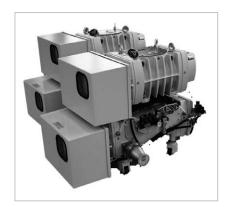
Solar

In the solar industry, Roots vacuum pumps can be found in almost all production steps. In connection with the Czochralski process or at DSS furnaces for the manufacture of silicon crystals, Roots vacuum pumps are deployed to rapidly attain the demanded conditioning pressure. In connection with the various coating processes they ensure the necessary pumping speed at process pressure and very fast cycles at the load lock chambers. In connection with lamination processes for the modules they assist in pumping down the laminators quickly and ensure a high pumping speed at lamination pressure.

Owing to the high production pressure, very much is demanded as to the reliability of the pumps during all process steps and this despite of reduced maintenance and service complexity.

Process Industry

Typical process industry applications are highly demanding regarding the ruggedness of Roots pumps. These need not only to pump clean media but must also be suited for pumping dusty or vapor containing media within an industrial environment.


Here a high level of ruggedness is demanded at a good price-to-performance ratio.

Whether during metallurgical processing or heat treatment of metals, in connection with drying processes, the plasma treatment of surfaces or in vacuum packaging processes – everywhere Roots pumps from the different RUVAC lines can excel. They permit a rapid pump down and offer a high pumping speed at process pressure. In combination with a frequency converter, extremely high pumping speeds are possible with a small footprint.

Laser Systems (WSLF 1001)

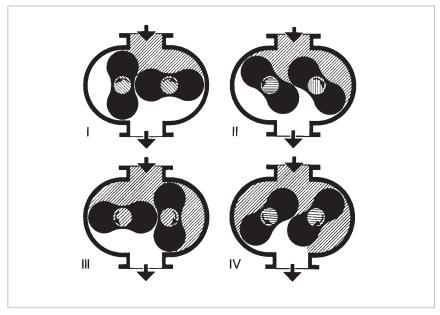
Continuous circulation of the gas in order to remove heat from a closed cycle in which pressure differentials of up to 100 mbar (75 Torr) must be maintained. The high cleanness requirements necessitate an absolute freedom from oil and particles. This is ensured through a reduced pressure level within the oil-filled gear chambers as well as a nickel coated pump chamber. Assembly and testing is run under clean room conditions.

The canned motor ensures a high degree of leak-tightness to the outside and permits operation in connection with a frequency converter.

Pump system consisting of RUVAC WH 2500 und DRYVAC DV 650

Operating Principle

Roots vacuum pumps, which are also called Roots blowers, are rotary plunger type pumps where two symmetrically shaped impellors rotate in opposite directions inside the pump housing.


The figure-of-eight rotors are synchronized by a gear which ensures that the impellors are counter-rotating in such a way, that they are near to one another and to the housing without actual contacting.

In rotor positions I and II (see figure "Operational diagram of a single-stage Roots vacuum pump (with vertical pumping action)") the volume of the intake is increased. As the rotors turn further to position III a part of the volume is cut off from the intake side.

In position IV this volume is opened to the exhaust side and gas under fore-vacuum pressure (higher than the intake pressure) flows in. This gas compresses the gas coming from the intake. As the rotors turn further the compressed gas is ejected through the exhaust flange.

This process repeats itself twice for each rotor per full turn.

As the rotors do not come into contact with the pump's housing Roots vacuum pumps may be operated at high speeds. Thus a high pumping speed is obtained from comparably small pumps.

Operational diagram of a single-stage Roots vacuum pump (with vertical pumping action)

The pressure difference and the compression ratio between intake and exhaust is limited in Roots vacuum pumps.

In practice the maximum attainable pressure difference is of significance only in the rough vacuum range (p > 10 mbar (p > 7.5 Torr)) where-as in the medium vacuum range (p < 1 mbar (p < 0.75 Torr)) the attainable compression ratio is of importance.

Roots vacuum pumps from Leybold have been designed to specially meet the requirements of the fine vacuum range. They are normally used in connection with backing pumps or in closed gas cycles (WSLF series).

Design

The pump chamber of Roots vacuum pumps is free of any sealing agents or lubricants. Only the toothed wheels of the synchronous gear are lubricated with oil. Toothed gear wheels and bearings of the RUVAC are placed in two side chambers which also contain the oil reservoir. These two side chambers are separated from the pump chamber by piston ring seals.

Suitably designed oil supply systems in both chambers ensure that a sufficient quantity of oil is supplied to the gear wheels and bearings at all permissible speeds.

Almost all RUVAC Roots vacuum pumps are designed for a horizontal and vertical pumping action.

Types

Various types of Roots vacuum pumps have been developed to ensure optimum adaptation to the widely varying applications for this type of pump.

Flange mounted motor

The drive shaft of the pump is directly connected to an electric motor via a flexible coupling. The required seal of the drive shaft against atmospheric pressure is obtained by oiled shaft seals.

- Canned motor

In the canned motor, rotor and stator pack are separated by a vacuum-tight can made of a non-magnetic material. The rotor ope-rates on the drive shaft of the pump in the vacuum, so that a shaft seal which would be subject to wear is not required.

- Hermetically sealed motor

The hermetically sealed motor is the latest technology step for Roots vacuum pumps. It integrates the complete motor assembly into the vacuum reaching the same efficiency as a standard flange mounted motor without the need of a shaft seal. The hermetically sealed motor is the most compact, efficient and reliable motor technology available for roots pumps.

Pressure equalization line

The integrated pressure equalization line connects the exhaust flange to the intake flange by means of a differential pressure valve.

In the event of an excessively high pressure difference between the

flanges, the valve will open. Then a part of the pumped gas will flow through this line back to the intake flange.

Therefore the pump may be switched on together with the backing pump at atmospheric pressure. This increases the pumping speed of the pump combination also at high intake pressures.

- Special ACE vibration absorber
These pumps are best used in applications involving frequent pumpdown cycles. The vibration absorber is of an oil sealed or filled design where minute amounts of oil may enter the vacuum system via the piston of the vibration attenuator.

RUVAC WA/WAU, WS/WSU

The series WA/WAU Roots vacuum pumps are provided with directly flange-mounted air-cooled standard three-phase motors. The oiled radial sealing rings of the RUVAC WA/WAU for sealing the shaft against the atmosphere are made of FPM (FKM) (fluor polymer).

The WS/WSU series pumps have a air-cooled hermetically canned motor.

Roots vacuum pumps of the series WAU/WSU/WHU are provided with an additional integrated pressure equalization line and a differential pressure valve.

Pumps from these series are supplied with a vertical pumping action as standard.

RUVAC WH/WHU

The series WH/WHU pumps are technological leaders in the area of Roots vacuum pumps.

Both motors and oil reservoirs are water cooled thereby perfectly balancing the internal temperature management of the pumps resulting in significantly lower oil temperatures and thus a longer oil service life. At ultimate pressure, emissions are reduced by approximately 50% and the motor coils can sustain higher loads while at the same time offering improved efficiency. The new drive concept with potted motors replaces the can for hermetically sealed drives. This improves efficiency even further whereby the motors are capable of complying with the IE2 requirements of the new efficiency standard without problems. In order to increase pumping speed thereby cutting pumpdown times, optionally available specially parameterized frequency converters can be used. Moreover, the pump may be operated at its maximum power already at atmospheric pressure.

Especially for short cycles the new WHU pump is being equipped with improved valve technology. Due to the bypass line, this pump can be operated starting at atmospheric pressure. The bypass valve already closes at a very early stage, whereby the cycle times can be significantly reduced. Pumps from the WHU series should not be operated over longer periods of time at high pressures.

Using the RUVAC WS and RUVAC WH in combination with a frequency converter

Simulation of a pressure equalization line

The available frequency converters have been matched to the pump so that the possibility of mechanically overloading it is excluded. In the case of a pressure difference which is too high, the rotational speed of the pump is automatically reduced until its load drops in to the permissible range.

Operation at any rotational speeds

The frequency converter can be used to adjust the pumping speed of the Roots pump during operation. This allows maximum flexibility to find the right setup for any application.

Increasing the pumping speed

The pumps were developed to handle a maximum rotational speed between 4200 rpm and 7200 rpm depending on the respective pump size.

Therefore the use of a frequency converter permits an increase in the nominal pumping speed of up to 140%.

Note

Please enquire about possibly existing usage limits (process dependent).

RUVAC WSLF

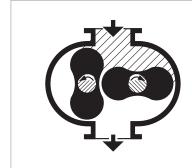
The pumps of these series are especially adapted Roots vacuum pumps from the RUVAC WS series which are intended for operation with gas lasers.

They are driven by a canned motor so that a shaft seal for sealing against atmospheric pressure is not required.

Air-cooled series with nominal pumping speeds of 1000 m³ x h⁻¹ (589 cfm) are available.

The RUVAC WSLF series with in-creased motor ratings is intended for operation in connection with frequency converters.

These pumps are available with nickelplated or plasma-nitrated surface as standard.


All pumps of these series are supplied with a horizontal pumping action.

Vertical pumping action is available upon request.

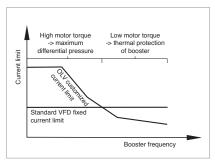
Backing Pumps

The backing pumps from Leybold listed in the following are recommended for connection to the RUVAC Roots vacuum pumps:

- Rotary vane vacuum pumps
 - TRIVAC B with pumping speeds between 16 and 65 m³ x h⁻¹ (9.4 and 38.3 cfm)
- Rotary vane vacuum pumps
 - SOGEVAC with pumping speeds between 16 and 1200 m³ x h⁻¹ (9.4 and 707 cfm)
- Dry compressing screw vacuum pumps
 - SCREWLINE SP 250 and SP 630 with pumping speed of 250 and 630 m³ x h⁻¹ (147.3 and 371 cfm)
- Dry compressing screw vacuum pumps
 - DRYVAC with pumping speed of 450 to 3800 m³ x h⁻¹ (265 and 2238 cfm)
 - directly adaptable
 - smallest system
 - smart control

Schematic section through a RUVAC WA/WS (left) and a RUVAC WAU/WSU (right)

Accessories


Frequency Converter V1000

A frequency converter was specially developed for the WH series which perfectly matches the requirements of vacuum engineering applications.

Owing to the flexible current limiting, the maximum pumping speed is available within the high pressure range whereas in the lower pressure ranges the current limit is reduced correspondingly so as to best protect the pump against thermal overloads.

This combination of power and protection can only be attained through our specially developed frequency converter.

"Plug and play operation" allows for simple installation. The frequency converters are set up in the factory so that they only need to be connected for optimised pump operation. It is not necessary to set up any additional parameters, and no further expert know-how is required.

Flexible motor current limit V 1000

Frequency Converter RUVATRONIC RT 5

The electronic frequency converters RUVATRONIC RT 5/251 to 5/16000 have been designed specially for use in connection with Leybold Roots pumps of the RUVAC WA and WS series.

The main characteristics of the RUVATRONIC RT 5 are:

Simulation of a pressure equalization line

The software of the frequency converters is adapted to each pump and ensures that the risk of mechanically overloading the pump can be excluded. In the case of too high pressure differences, the rotational speed will be decreased automatically until the load is reduced to within the pump's limits. RUVAC Roots vacuum pumps of the types WA and WS (without pressure equalization line) can be switched on together with the forepump at atmospheric pressure. Through this, the pumpdown time can be reduced drastically. The minimum pumping speed of the backing pump needs to be considered in this case.

In connection with this kind of operation, the minimum pumping speed of the backing pump needs to be observed.

Pump	Required pumping speed for the backing pump
WA/WS 251	50 m ³ /h (29 cfm)
WA/WS 501	100 m ³ /h (59 cfm)
WA/WS 1001	200 m ³ /h (118 cfm)
WA/WS 2001	410 m ³ /h (241 cfm)
WH 700	140 m ³ /h (82 cfm)
WH/WHU 2500	430 m ³ /h (253 cfm)
WH/WHU 4400	880 m ³ /h (518 cfm)
WH/WHU 7000	1200 m ³ /h (707 cfm)

Operation at up to 3 predefined speeds

Via floating contacts, the pump can be operated at one of the 3 predefined speeds. Switching over to another predefined speed is possible during operation.

Operation at any rotational speed

With a 0 to 10 V signal, any speed can be predefined to operate the pump between the minimum and maximum rotational speed. The software reliably ensures that the rotational speed cannot drop below the minimum speed or exceed the maximum speed.

Increase in the pumping speed

By operating the Roots vacuum pumps at frequencies over 50 Hz, the nominal pumping speed of the pumps can be increased. Depending on the type of pump, an increase between 20 and 100% is possible.

Note

Please enquire about possible application limitations (process dependent).

Dust Separators and Dust Filters

Vacuum processes with a high particle count or involving significant quantities of dust require special measures for protecting the vacuum pumps.

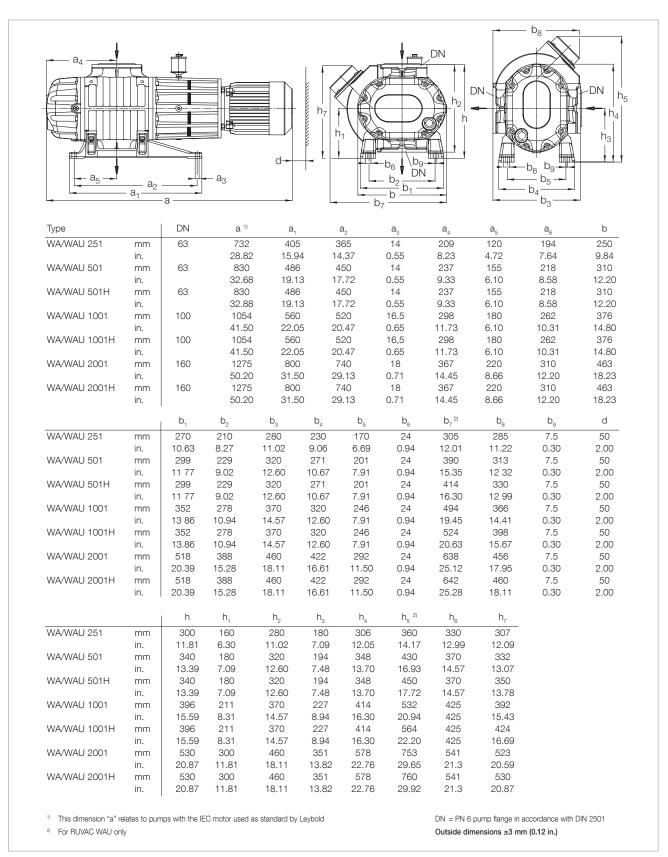
Dust separators and dust filters can be found in the Catalog Part "Vacuum Pump Systems", Chapter "Accessories for oil sealed and dry compressing vacuum pumps".

Products

RUVAC WA/WAU 251 to 2001 Roots Vacuum Pumps with Air-Cooled Flange-Mounted Motors

RUVAC WAU 2001 single-stage Roots vacuum pump

Advantages to the User


- Two air-cooled lines WA/WAU, each with four pump sizes
- Motors of efficiency class IE 2 (WA/WAU 2001: efficiency class IE 3)
- Reliable and trouble-free
- Sealing rings with their housing can be readily replaced
- Shaft seals and elastomer seals made of FPM (FKM)/Viton
- Easy to exchange with custom motors
- Integrated pressure equalization line for protection against overloading at high pressures on WAU models
- Conversion from vertical to horizontal pumping action can be done from the side of the customer
- All WA(U) pumps comply as standard with ATEX Cat. 3i
- Depending on requirements, motors from different ATEX categories can be fitted

Typical Applications

- For oil-free compression of gases and vapors in combination with a backing pump
- Short cycle pumping processes also in the presence of large quantities of gas and vapor

Supplied Equipment

- RUVAC WA/WAU are supplied as standard for a vertical pumping action, horizontal pumping action upon request
- Mineral oil LVO 100 is used as standard
- Gasket in the intake flange with dirt sieve
- The required lubricant filling is included in separate bottles

Dimensional drawing for the RUVAC WA/WAU(H) pumps

Technical Data WA/WAU 251 WA/WAU(H) 501

	50 Hz	60 Hz	50 Hz	60 Hz
Nominal pumping speed ¹⁾ m ³ x h ⁻¹ (cfn	253.0 (149.0)	304.0 (179.0)	505.0 (297.4)	606.0 (357.0)
Max. effective pumping speed m³ x h¹ (cfm with backing pump TRIVA SOGEVA	D 65 B	251.0 (148.0) D 65 B	410.0 (241.0)	530.0 (312.0)
		_	SV 200	SV 200
Ultimate total pressure 2 mbar (Tor	r) < 8 x 10 ⁻⁴ (< 6 x 10 ⁻⁴)	< 8 x 10 ⁻⁴ (< 6 x 10 ⁻⁴)	< 4 x 10 ⁻² (< 3 x 10 ⁻²)	< 4 x 10 ⁻² (< 3 x 10 ⁻²)
Max. permissible pressure difference during continuous operation ³⁾ mbar (Tor	80.0 (60.0)	80.0 (60.0)	80.0 (60.0)	80.0 (60.0)
Leak rate, integral mbar x l x s	-1 < 5 x 10 ⁻⁴	< 5 x 10 ⁻⁴	< 5 x 10 ⁻⁴	< 5 x 10 ⁻⁴
	V 200-240 V 380-400	200-240 380-480	200-240 380-400	200-240 380-480
Thermal class	F	F	F	F
Permissible ambient temperatures ° (°l	+5 to +40 (+ 41 to +104)			
Motor power kW (hp	1.1 (1.5)	1.1 (1.5)	2.2 (3.0)	2.2 (3.0)
Energy efficiency class	IE 2	IE 2	IE 2	IE 2
Nominal speed, approx. rpi	m 3000	3600	3000	3600
Max. permissible speed rpi	m 3600	3600	3600	3600
Type of protection	P 55	55	55	55
ATEX protection category 4)	Category 3i	Category 3i	Category 3i	Category 3i
Lubricant for the bearing chamber ⁵⁾ vertical pumping action, approx. I (q horizontal pumping action, approx. I (q	- ()	0.6 (0.63) 0.45 (0.48)	0.8 (0.85) 0.7 (0.74)	0.8 (0.85) 0.7 (0.74)
Lubricant of the shaft sealing ring housing I (q	0.6 (0.63)	0.6 (0.63)	1.0 (1.06)	1.0 (1.06)
Connection flanges D	N 63 ISO-K	63 ISO-K	63 ISO-K	63 ISO-K
Materials (materials in contact with the gas	C steel, CrNi steel, grey cast iron, FPM (FKM)			
Weight WA / WAU k	9 85.0 / 89.0 (187.4 / 196.2)	85.0 / 89.0 (187.4 / 196.2)	128.0 / 133.0 (282.2 / 293.3)	128.0 / 133.0 (282.2 / 293.3)
Noise level ⁶⁾ dB(A	< 62	< 64	< 65	< 67

¹⁾ To DIN 28 400 and subsequent numbers

With double-stage rotary vane vacuum pump TRIVAC, resp. single-stage rotary vane vacuum pump SOGEVAC (Type of backing pump look at max. pumping speed).

When using 2-stage backing pumps the ultimate pressures will be correspondingly lower

 $^{^{\}scriptscriptstyle (3)}$ Applicable for ratio up to 1 : 10 between backing pump and Roots vacuum pump at 3000 rpm

⁴⁾ For ATEX category 3o a appropriate motor has to be used. Please contact Leybold (Solution)

⁵⁾ Authoriative, however, is the oil level at the oil-level glass

⁶⁾ Valid under ultimate pressure conditions. Pressures over 10 mbar (7.5 Torr) produce a higher operating noise

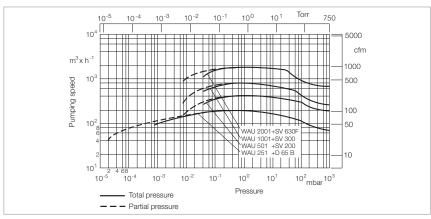
Technical Data WA/WAU (H) 1001 WA/WAU(H) 2001

	50 Hz	60 Hz	50 Hz	60 Hz
Nominal pumping speed ¹⁾ m ³ x h ⁻¹ (cfm)	1000 (589)	1200 (707)	2050 (1207.5)	2460 (1449)
$ \begin{array}{ll} \text{Max. effective pumping speed} & \text{m}^3 \text{ x h}^{\text{-1}} \text{ (cfm)} \\ \text{with backing pump} & \text{SOGEVAC} \end{array} $	800 (470) SV 300 B	1000 (588) SV 300 B	1850 (1089) SV 630 BF	2100 (1236) SV 630 BF
Ultimate total pressure 2) mbar (Torr)	< 4 x 10 ⁻² (< 3 x 10 ⁻²)	< 4 x 10 ⁻² (< 3 x 10 ⁻²)	< 4 x 10 ⁻² (< 3 x 10 ⁻²)	< 4 x 10 ⁻² (< 3 x 10 ⁻²)
Max. permissible pressure difference during continuous operation ³⁾ mbar (Torr)	80.0 (60.0)	80.0 (60.0)	50.0 (37.5)	50.0 (37.5)
Leak rate, integral $$ mbar x I x $$ s $^{-1}$	< 5 x 10 ⁻⁴			
Mains supply V V	200-240 380-400	200-240 380-480	200-240 380-400	200-240 380-480
Thermal class	F	F	F	F
Permissible ambient temperatures °C (°F)	+5 to +40 (+ 41 to +104)			
Motor power kW (hp)	4.0 (5.4)	4.0 (5.4)	7.5 (10.0)	7.5 (10.0)
Energy efficiency class	IE 2	IE 2	IE 2	IE 2
Nominal speed, approx. rpm	3000	3600	3000	3600
Max. permissible speed rpm	3600	3600	3600	3600
Type of protection IP	55	55	55	55
ATEX protection category 4)	Category 3i	Category 3i	Category 3i	Category 3i
Lubricant for the bearing chamber ⁵⁾ vertical pumping action, approx. I (qt) horizontal pumping action, approx. I (qt)	1.8 (1.90) 1.1 (1.16)	1.8 (1.90) 1.1 (1.16)	3.6 (3.81) 2.4 (2.54)	3.6 (3.81) 2.4 (2.54)
Lubricant of the shaft sealing ring housing I (qt)	1.3 (1.37)	1.3 (1.37)	1.6 (1.69)	1.6 (1.69)
Connection flanges DN	100 ISO-K	100 ISO-K	160 ISO-K	160 ISO-K
Materials (materials in contact with the gas)	C steel, CrNi steel, grey cast iron, FPM (FKM)			
Weight WA / WAU kg (lbs)	220.0 / 225.0) (485.1 / 496.1)	220.0 / 225.0 (485.1 / 496.1)	400.0 / 406.0 (882.0 / 895.2)	400.0 / 406.0 (882.0 / 895.2)
Noise level ⁶⁾ dB(A)	< 70	< 73	< 72	< 77

¹⁾ To DIN 28 400 and subsequent numbers

With single-stage rotary vane vacuum pump SOGEVAC (Type of backing pump look at max. pumping speed). When using 2-stage backing pumps the ultimate pressures will be correspondingly lower

³⁾ Applicable for ratio up to 1:10 between backing pump and Roots vacuum pump at 3000 rpm


⁴⁾ For ATEX category 3o a appropriate motor has to be used. Please contact Leybold (Solution)

⁵⁾ Authoriative, however, is the oil level at the oil-level glass

⁶⁾ Valid under ultimate pressure conditions. Pressures over 10 mbar (7.5 Torr) produce a higher operating noise

Ordering Information	WA/WAU	WA/WAU(H)	WA/WAU(H)	WA/WAU(H)
	251	501	1001	2001
	Part No.	Part No.	Part No.	Part No.
Roots vacuum pump				
RUVAC WA	117 20	117 30	117 40	117 50
RUVAC WAU	117 21	117 31	117 41	117 51
RUVAC WA, without motor	117 24	117 34	117 44	112 54
RUVAC WAU, without motor	-	155 008	112 17	113 22
RUVAC WAU(H),				
with special ACE vibration absorber	-	118 31	118 41	118 51
Mandatory Accessories				
Collar flange with retaining ring, DIN 2501 1)				
DN 63 ISO-K	267 47	267 47	_	_
DN 100 ISO-K	-	_	267 50	-
DN 160 ISO-K	-	-	-	267 51
Accessories			1	1
RUVAC WS/WSU(H) seal kit	194 60	194 64	194 68	194 72
Flange adapter set, consisting of Flange adapter with screws, bolts, washers and nuts for ANSI flange WA/WS pump WAU/WSU pump	(3" ANSI) 200 03 179 200 03 179	(3" ANSI) 200 03 179 200 03 179	(4" ANSI) 200 03 180 200 03 180	(6" ANSI) 200 03 181 200 03 182
RUVAC WA US conversion kit, consisting of ANSI flanges 3 in., NEMA motor flange, coupling and installation components WA(U) pumps	155 013V	155 014V	155 015V	155 016V
Frequency converter RUVATRONIC (see description in chapter "General",	RT 5/251	RT 5/501	RT 5/1001	RT 5/2001
paragraph "Accessories")	500 001 381	500 001 382	500 001 383	500 001 384
Accessories				
Shaft sealing ring replacement kit WA/WAU	EK 110 002 661	EK 110 002 661	EK 110 002 662	EK 110 002 662
Major maintenance kit WA	EK 110 002 663	EK 110 002 664	EK 110 002 667	EK 110 002 669
WAU	EK 110 002 665	EK 110 002 666	EK 110 002 668	EK 110 002 670

 $^{^{\}mbox{\tiny 1)}}$ For connection to flange system DN 63 ISO-K, resp. DN 100 ISO-K, resp. DN 160 ISO-K

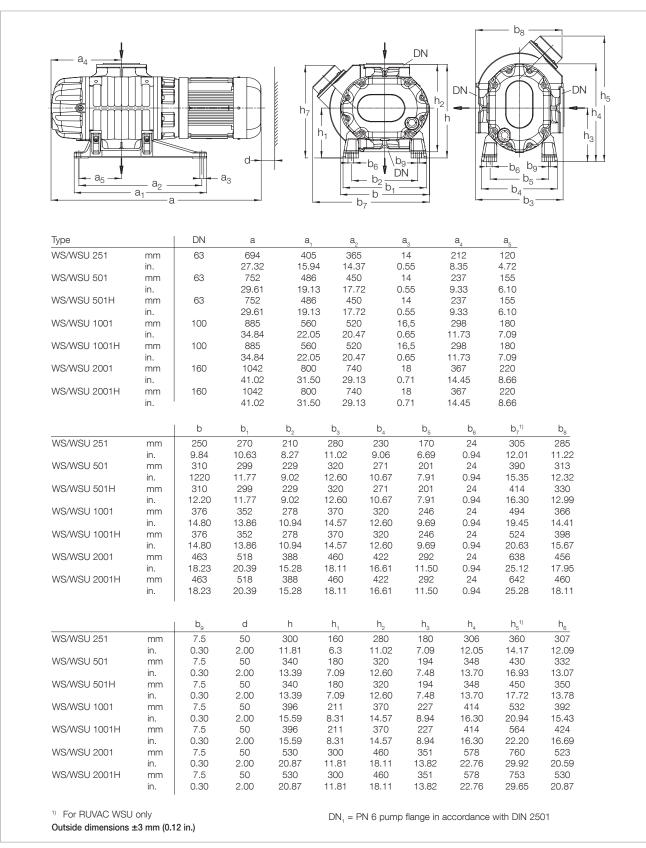
Pumping speed of the RUVAC WA/WAU, 50 Hz

Notes	

RUVAC WS/WSU 251 to 2001 Roots Vacuum Pumps with Air-Cooled Canned Motors

Single-stage Roots vacuum pump RUVAC WSU 2001

Advantages to the User


- Two air-cooled lines WS/WSU, each with four pump sizes
- Highly leak-tight air-cooled pumps driven by a air-cooled canned motor
- Lubricated with mineral oil (alternatively with LVO 400)
- Over-temperature switch in the stator coil of the motor
- All elastomer seals made of FPM (FKM)/Viton
- Integrated pressure equalization line with differential pressure valve prevents overloading on WSU model (optional)
- A frequency converter can be used to operate the RUVAC WS 251 to 2001 pumps between 20 and 100 Hz
- No shaft feedthrough to the atmosphere, thus particularly leak-tight
- Conversion from vertical to horizontal pumping action can be done from the side of the customer

Typical Applications

- For applications which require a high pumping speed at pressures between 10⁻² and 10⁻⁴ mbar (0.75 x 10⁻² and 0.75 x 10⁻⁴ Torr)
- Used where the possibility of contamination due air ingress or pumped media leakage must be avoided
- Suction or pumping of high-purity or radioactive gases
- Is used in clean rooms were the air must not be recirculated by the motor's fan

Supplied Equipment

- The required quantity of oil is supplied separately with the pump (exceptions from this are indicated)
- If no other type of oil is stated, then mineral oil LVO 100 is used as standard
- Purged with nitrogen for corrosion protection
- Gasket in the intake flange with integrated dirt sieve

Dimensional drawing for the RUVAC WS/WSU(H) pumps

Technical Data WS/WSU 251 WS/WSU(H) 501

	50 Hz	60 Hz	50 Hz	60 Hz		
Nominal pumping speed ¹⁾ m ³ x h ⁻¹ (cfm)	253 (149)	304 (179)	505 (297.4)	606 (357)		
Max. effective pumping speed m³ x h⁻¹ (cfm) with backing pump TRIVAC SOGEVAC	210.0 (123.7) D 65 B -	251.0 (148.0) D 65 B	410.0 (241.0) - SV 200	530.0 (312.0) - SV 200		
Ultimate total pressure 2) mbar (Torr)	< 8 x 10 ⁻⁴ (< 6 x 10 ⁻⁴)	< 8 x 10 ⁻⁴ (< 6 x 10 ⁻⁴)	< 4 x 10 ⁻² (< 3 x 10 ⁻²)	< 4 x 10 ⁻² (< 3 x 10 ⁻²)		
Max. permissible pressure difference during continuous operation ³⁾ mbar (Torr)	80.0 (60.0)	80.0 (60.0)	80.0 (60.0)	80.0 (60.0)		
Leak rate, integral mbar x I x s ⁻¹	< 1 x 10 ⁻⁴					
Mains supply Δ / Y V	200 / 230 / 400	200-208 / 265 / 460	200 / 230 / 400	200-208 / 265 / 460		
Thermal class	F	F	F	F		
Permissible ambient temperatures °C (°F)	+5 to +40 (+ 41 to +104)					
Motor power kW (hp)	1.1 (1.5)	1.4 (1.9)	2.2 (3.0)	2.4 (3.3)		
Nominal speed, approx. rpm	3000	3600	3000	3600		
Max. permissible speed rpm	6000	6000	6000	6000		
Type of protection IP	20	20	20	20		
Lubricant for the bearing chamber 4) LVO 400						
vertical pumping action, approx. I (qt) horizontal pumping action, approx. I (qt) other oils	0.55 (0.58) 0.45 (0.48)	0.55 (0.58) 0.45 (0.48)	0.75 (0.79) 0.7 (0.74)	0.75 (0.79) 0.7 (0.74)		
vertical pumping action, approx. I (qt) horizontal pumping action, approx. I (qt)	0.6 (0.63) 0.45 (0.48)	0.6 (0.63) 0.45 (0.48)	0.8 (0.85) 0.7 (0.74)	0.8 (0.85) 0.7 (0.74)		
Connection flanges DN	63 ISO-K	63 ISO-K	63 ISO-K	63 ISO-K		
Weight WS / WSU kg (lbs)	90.0 / 95.0 (198.5 / 209.5)	90.0 / 95.0 (198.5 / 209.5)	130.0 / 135.0 (286.7 / 297.7)	130.0 / 135.0 (286.7 / 297.7)		
Noise level ⁵⁾ dB(A)	< 58	< 60	< 52	< 56		

¹⁾ To DIN 28 400 and subsequent numbers

²⁾ With double-stage rotary vane vacuum pump TRIVAC or single-stage rotary vane vacuum pump SOGEVAC (Type of backing pump look at max. pumping speed)

When using 2-stage backing pumps the ultimate pressures will be correspondingly lower

³⁾ Applicable for ratio up to 1:10 between backing pump and Roots vacuum pump at 3000 rpm

⁴⁾ Authoriative, however, is the oil level at the oil-level glass

⁵⁾ Valid under ultimate pressure conditions. Pressures over 10 mbar (7.5 Torr) produce a higher operating noise

Technical Data WS/WSU(H) 1001 WS/WSU(H) 2001

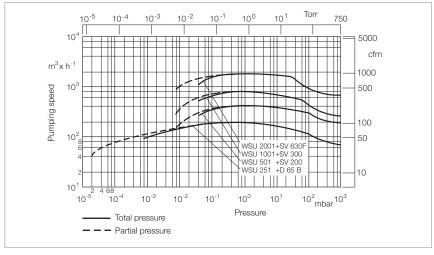
	50 Hz	60 Hz	50 Hz	60 Hz
Nominal pumping speed 1) m³ x h⁻¹ (cfm)	1000 (589)	1200 (707)	2050 (1207.5)	2460 (1449)
Max. effective pumping speed m³ x h⁻¹ (cfm)	800 (470)	1000 (588)	1850 (1089)	2100 (1236)
with backing pump SOGEVAC	SV 300 B	SV 300 B	SV 630 BF	SV 630 BF
Ultimate total pressure 2) mbar (Torr)	< 4 x 10 ⁻² (< 3 x 10 ⁻²)	< 4 x 10 ⁻² (< 3 x 10 ⁻²)	< 4 x 10 ⁻² (< 3 x 10 ⁻²)	< 4 x 10 ⁻² (< 3 x 10 ⁻²)
Max. permissible pressure difference				
during continuous operation ³⁾ mbar (Torr)	80.0 (60.0)	80.0 (60.0)	50.0 (37.5)	50.0 (37.5)
Leak rate, integral mbar x I x s ⁻¹	< 1 x 10 ⁻⁴			
Mains supply				
Δ/Υ V	200 / 230 / 400	200-208 / 265 / 460	200 / 230 / 400	200-208 / 265 / 460
Thermal class	F	F	F	F
Permissible ambient temperatures °C	+5 to +40	+5 to +40	+5 to +40	+5 to +40
(°F)	(+ 41 to +104)			
Motor power kW (hp)	4.0 (5.4)	4.4 (6.0)	7.5 (10.0)	8.5 (11.6)
Nominal speed, approx. rpm	3000	3600	3000	3600
Max. permissible speed rpm	6000	6000	4200 4)	4200 4)
Type of protection IP	20	20	20	20
Lubricant for the bearing chamber ⁵⁾ LVO 400				
vertical pumping action, approx. I (qt)	1.75 (1.85)	1.75 (1.85)	2.7 (2.85)	2.7 (2.85)
horizontal pumping action, approx. I (qt)	1.1 (1.16)	1.1 (11.16)	1.9 (2.00)	1.9 (2.00)
other oils				
vertical pumping action, approx. I (qt)	1.8 (1.90	1.8 (1.90)	3.6 (3.81)	3.6 (3.81)
horizontal pumping action, approx. I (qt)	1.1 (1.16)	1.1 (1.16)	2.4 (2.54)	2.4 (2.54)
Connection flanges DN	100 ISO-K	100 ISO-K	160 ISO-K	160 ISO-K
Weight WS / WSU kg	228.0 / 233.0	228.0 / 233.0	458.0 / 465.0	458.0 / 465.0
(lbs)	(502.7 / 513.8)	(502.7 / 513.8)	(1009.9 / 1025.3)	(1009.9 / 1025.3)
Noise level ⁶⁾ dB(A)	< 60	< 62	< 65	< 67

¹⁾ To DIN 28 400 and subsequent numbers

With single-stage rotary vane vacuum pump SOGEVAC (Type of backing pump look at max. pumping speed)

When using 2-stage backing pumps the ultimate pressures will be correspondingly lower

 $^{^{\}scriptscriptstyle (3)}$ Applicable for ratio up to 1 : 10 between backing pump and Roots vacuum pump at 3000 rpm


⁴⁾ Also 6000 rpm upon order

 $^{^{\}mbox{\tiny 5)}}$ Authoriative, however, is the oil level at the oil-level glass

⁶⁾ Valid under ultimate pressure conditions. Pressures over 10 mbar (7.5 Torr) produce a higher operating noise

Ordering Information	WS/WSU	WS/WSU(H)	WS/WSU(H)	WS/WSU(H)
	251	501	1001	2001
	Part No.	Part No.	Part No.	Part No.
Roots vacuum pump				
RUVAC WS, (LVO 100)	117 22	117 32	117 42	117 52
RUVAC WSU, (LVO 100)	117 23	117 33	117 43	117 53
RUVAC WS-PFPE oil, (LVO 400)	117 27	117 37	117 47	117 57
RUVAC WSU-PFPE oil, (LVO 400)	117 28	117 38	-	200 03 123
RUVAC WS 2001-Ester oil (LVO 210) (max. 100 Hz)	-	-	-	167 007
RUVAC WS 2001-PFPE oil, (LVO 400) (max. 100 Hz)	-	-	-	150 95
RUVAC WSU 2001-Ester oil (LVO 210) (max. 100 Hz)	-	-	-	150 96
RUVAC WSU H, (LVO 100) with special ACE vibration absorber	-	118 33	118 43	118 53
RUVAC WSU H-PFPE oil (LVO 210) with special ACE vibration absorber	-	-	150 47	167 129V
Mandatory Accessories				
Collar flange with retaining ring, DIN 2501 1)				
DN 63 ISO-K	267 47	267 47	_	_
DN 100 ISO-K	_	_	267 50	_
DN 160 ISO-K	_	_	_	267 51
Accessories				
Flange adapter set, consisting of flange adapter with screws, bolts, washers and nuts for ANSI flange	(3" ANSI)	(3" ANSI)	(4" ANSI)	(6" ANSI)
WA/WS pump WAU/WSU pump	200 03 179 200 03 179	200 03 179 200 03 179	200 03 180 200 03 180	200 03 181 200 03 182
Frequency converter RUVATRONIC (see description in chapter "General",	RT 5/251	RT 5/501	RT 5/1001	RT 5/2001
paragraph "Accessories")	500 001 381	500 001 382	500 001 383	500 001 384
Spare Parts				
Major maintenance kit				
WS WSU	EK 110 002 671 EK 110 002 675	EK 110 002 672 EK 110 002 676	EK 110 002 673 EK 110 002 677	EK 110 002 674 EK 110 002 678
RUVAC WS/WSU(H) seal kit	194 62	194 66	194 70	194 74

¹⁾ For connection to flange system DN 63 ISO-K, resp. DN 100 ISO-K, resp. DN 160 ISO-K

Pumping speed of the RUVAC WS/WSU, 50 Hz

Notes Control of the

RUVAC WH/WHU Roots Vacuum Pumps with Water-Cooled Hermetically Sealed Motors with Synthetic Oil or PFPE filling

RUVAC WH 4400 and WH 7000 single-stage Roots vacuum pump with hermetically sealed motor

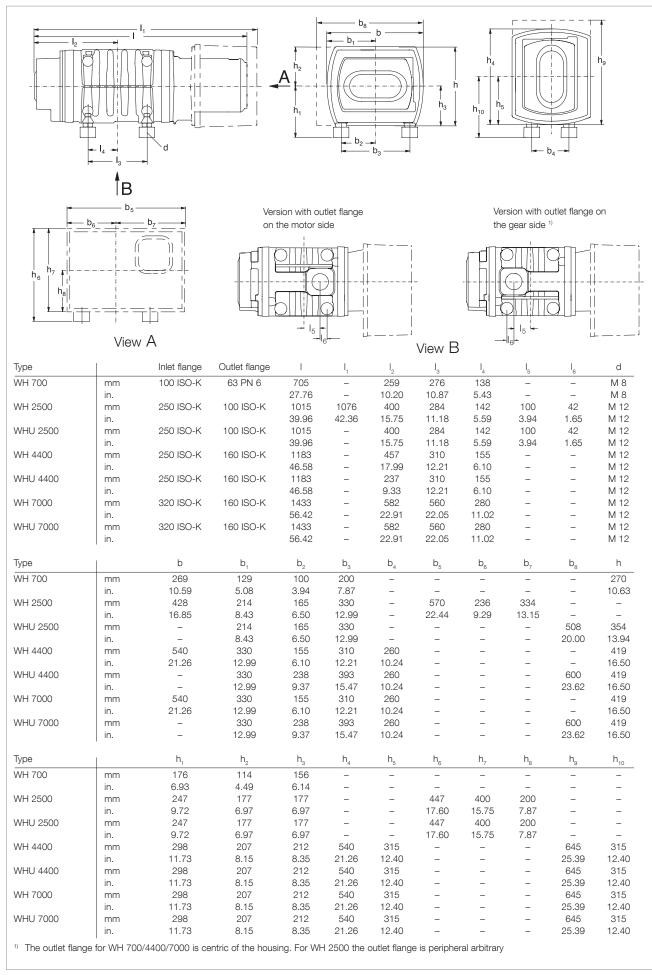
Advantages to the User

- Lower energy costs through innovative motor technology IE 2
- Minimized space requirements due to an extremely compact design
- Easy system integration
- Optimum price-to-performance ratio; high pumping speed up to 9800 m³/h @ 70 Hz with optional frequency converter
- Integrated water cooling system for installation within closed systems
- Parts in contact with the cooling water are made of stainless steel (corrosion-free)
- Trouble-free operation with toxic or corrosive media owing to the hermetically sealed motor
- No shaft seals towards atmosphere, therefore high reliability, long service intervals and no oil leaks
 Conversion from vertical to horizontal pumping action can be done from the side of the customer (for WH 4400/7000)

- Secure operation and faster pump down in short cycle operation with optional bypass-line (does not apply to WH 700)
- Motor protection PTC and PTO

RUVAC WHU with Bypass Line

- Maximum efficiency in short cycle operation for the WHU types with bypass line and newly developed control flap
 - Reduced pumpdown time
 - Pump start-up at atmospheric pressure possible
 - Maximum pumpdown time with bypass line active not over three minutes
 - Optimized cycle time for the control flap (patent pending); delivers an even faster response compared to operation with frequency converter
 - Extreme contamination resistance of the control flap


Typical Applications

The Roots pumps of the WH series were developed for deployment in all applications with high requirements regarding operating pressure, cycle times and system uptime.

- Solar industry
- Furnace construction
- Industrial coating processes
- Research
- Space simulation

Supplied Equipment

- Pump will be delivered with standard shock absorbers
- Gasket in the intake flange with dirt sieve
- The required lubricant is included in separate bottles

Dimensional drawing for the RUVAC WH/WHU pumps

Technical Data WH 700

	50 Hz	60 Hz	80 Hz 1)	120 Hz ¹⁾
Nominal pumping speed ²⁾ m ³ x h ⁻¹ (cfm)	710 (418)	860 (507)	1150 (677)	1730 (1019)
Max. effective pumping speed with backing pump SOGEVAC SV 300 B m³ x h⁻¹ (cfm)	620 (365)	740 (436)	950 (560)	1310 (772)
Max. permissible pressure difference during continuous operation 3, 4, 5) WH 700 mbar (Torr)	75.0 (56.3)	65.0 (48.8)	50.0 (37.5)	30.0 (22.5)
Leak rate, integral mbar x l x s ⁻¹	< 1 x 10 ⁻⁵	< 1 x 10 ⁻⁵	< 1 x 10 ⁻⁵	< 1 x 10 ⁻⁵
Mains voltage WH 700 FC operation V Mains operation V	340 to 530 180 to 260 360 to 440 180 to 260	340 to 530 180 to 260 ⁶⁾ 410 to 500 210 to 260 ⁶⁾	340 to 530 180 to 260 –	340 to 530 180 to 260 - -
Max. permissible pressure difference at mains voltage ⁵⁾ 200 V mbar (Torr) 400 V mbar (Torr)	50.0 (37.5) 60.0 (45.6)	50.0 (37.5) 60.0 (45.6)	40.0 (30.4) 45.0 (34.2)	25.0 (9.0) 25.0 (19.0)
Permissible ambient temperatures WH 700 °C (°F)	+5 to +45 (+41 to +113)	+5 to +45 (+41 to +113)	+5 to +45 (+41 to +113)	+5 to +45 (+41 to +113)
Nominal power consumption WH 700 FC operation kW (hp) Mains operation kW (hp)	3.5 (4.7) 2.2 (2.9)	3.5 (4.7) 2.6 (3.5)	3.5 (4.7)	3.5 (4.7)
Idle mode power consumption kW (hp)	0.5 (0.7)	0.5 (0.7)	0.5 (0.7)	0.5 (0.7)
Energy efficiency class	IE 2	IE 2	IE 2	IE 2
Nominal speed WH 700 rpm	3000	3600	4800	7200
Max. permissible speed 7) rpm	7200	7200	7200	7200
Type of protection WH 700 IP	55	55	55	55
Water connection (4 pcs.)	1/4", female	1/4", female	1/4", female	1/4", female
Cooling water quantity 8) I/min	1 to 3	1 to 3	1 to 3	1 to 3
Cooling water admission temperature °C (°F)	5 to 35 (+41 to +95)	5 to 35 (+41 to +95)	5 to 35 (+41 to +95)	5 to 35 (+41 to +95)
Permissible cooling water pressure bar	2 to 6	2 to 6	2 to 6	2 to 6
Lubricant ⁹⁾ gear side I (qt) motor side I (qt)	0.6 (0.63) 0.3 (0.31)	0.6 (0.63) 0.3 (0.31)	0.6 (0.63) 0.3 (0.31)	0.6 (0.63) 0.3 (0.31)
Connection flange Inlet ISO-K Outlet ISO-K	100 63	100 63	100 63	100 63
Weight WH 700 kg (lbs)	125 (276)	125 (276)	125 (276)	125 (276)
Dimension (W x B x H) WH 700 mm (in.)	709 x 265 x 270 (27.91x10.43x10.63)	709 x 265 x 270 (27.91x10.43x10.63)	709 x 265 x 270 (27.91x10.43x10.63)	709 x 265 x 270 (27.91x10.43x10.63)
Noise level ¹⁰⁾ dB(A)	< 56	< 56	< 60	< 60

¹⁾ Only possible with frequency converter motor and external frequency converter

²⁾ To DIN 28 426 and subsequent numbers

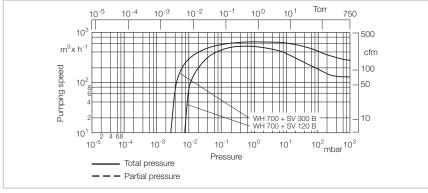
³⁾ Higher pressure differences are possible. Please contact Leybold (LV)

⁴⁾ Gas temperatures over 40 °C (104 °F) can result in a reduction of the pressure difference values; please consult LV on this

The optional frequency converter automatically reduces the rotational speed of the rotors so as to compensate for overloads. During operation do not expose the pump to sudden pressure increases like shock venting to atmospheric pressure, for example

 $^{^{\}mbox{\tiny 6)}}$ Requires 200 V $\,$ FC variant and 200 V $\,$ motor

Min. permissible speed: 1200 rpm if run for more than 1 hour


⁸⁾ The cooling water quantity can be reduced provided the temperature of the discharged water does not exceed 45 °C (113 °F)

⁹⁾ Authoriative, however, is the oil level at the oil-level glass

¹⁰⁾ Valid under ultimate pressure conditions. Pressures over 10 mbar (7.5 Torr) produce a higher operating noise

	Part No.
Roots vacuum pump	
RUVAC WH	
vertical flow direction	
3.8 kW	
400 V, internal FC, IP 55,	
PFPE oil (LVO 400)	167 186V
2.2 / 2.6 kW	
for direct inline operation 50/60 Hz	
200 / 240 V, Ester oil (LVO 210)	155 202
400 / 460 V, Ester oil (LVO 210)	155 203
400 V, PFPE oil (LVO 400)	155 208V
3.5 kW	
for FC operation (external FC)	
200 V, Ester oil (LVO 210)	155 204V
400 V, Ester oil (LVO 210)	155 205V
400 V, PFPE oil (LVO 400)	155 207V
200 V, PFPE	155 209V
Accessories	100 2001
Frequency converter	
with integrated mains filter	
200 / 240 V, motor power 4 kW	.==
(for Part. No. 155 204V)	155 218V
400 / 480 V, motor power 4 kW	455 6450
(for Part. No. 155 205V and 155 207V)	155 217V
LCD display (for Part. No. 155 217V and 155 218V)	155 213V
USB Copy Unit (for Part. No. 155 217V and 155 218V)	155 214V
Profibus DP module ¹⁾ (for Part. No. 155 217V and 155 218V)	155 212V
ProfiNet module for (DRYVAC/LEYVAC/RUVAC)	112005A35
EtherCAT module for (DRYVAC/LEYVAC/RUVAC)	112005A36
Relay module (digital output) for (DRYVAC/LEYVAC/RUVAC)	112005A01
Ethernet interface board for (DRYVAC/LEYVAC/RUVAC)	112005A02
Oil drain facility (M 16 x 1.5) with 90° drain coupling	200 14 271
Reducer DN 100/63 ISO-K	267 47
Spare Parts	
Major maintenance kit	EK 110 002 691

¹⁾ For further bus options please contact Leybold Sales

Pumping speed of the RUVAC WH 700

Technical Data

WH /WHU 2500

		,		
	50 Hz	60 Hz	80 Hz 1)	100 Hz 1)
Nominal pumping speed ²⁾ m ³ x h ⁻¹ (cfm)	2500 (1473)	3000 (1767)	4000 (2356)	5000 (2945)
Max. effective pumping speed with				
backing pump DRYVAC DV 650 m³ x h-1	2200	2500	3200	3900
(cfm)	(1296)	(1473)	(1885)	(2297)
Max. permissible pressure difference 3), 4), 5)				
during continuous operation (WH) mbar	50 to 75	40 to 60	30 to 40	20
(Torr)	(37.5 to 56.3)	(30.0 to 45.0)	(22.5 to 30.0)	(15.0)
for short-cycle operation < 2 min.				
(WHU) mbar	160	160		_
(Torr)	(120)	(120)	(-)	(-)
Leak rate, integral mbar x l x s ⁻¹	1 x 10 ⁻⁵	1 x 10 ⁻⁵	1 x 10 ⁻⁵	1 x 10 ⁻⁵
Mains voltage				
FC operation V	340 to 530	340 to 530	340 to 530	340 to 530
Mains an austinu	180 to 260	180 to 260	180 to 260	180 to 260
Mains operation V	360 to 440	410 to 500		-
Permissible ambient temperatures °C	+5 to +50	+5 to +50	+5 to +50	+5 to +50
(°F)	(+41 to +122)	(+41 to +122)	(+41 to +122)	(+41 to +122)
Nominal power rating	11 0 (14 0)	11 0 (14 0)	11 0 /14 0	11 0 (14 0)
FC operation (WH) kW (hp) Mains operation	11.0 (14.8)	11.0 (14.8)	11.0 (14.8)	11.0 (14.8)
WH kW (hp)	6.5 (8.7)	7.5 (10.0)	_	_
WHU (S6 operation) kW (hp)	15.0 (20.1)	18.0 (24.1)	_	_
Idle mode power consumption kW (hp)	0.7 (0.9)	0.9 (1.2)	1.2 (1.6)	1.4 (1.9)
Energy efficiency class	IE 2	IE 2	IE 2	IE 2
Nominal speed rpm	3000	3600	4800	6000
Max. permissible speed with FC ⁶⁾ rpm	6000	6000	6000	6000
Type of protection (int. FC/ext. FC)	54/55	54/55	54/55	54/55
Cooling water connection (2 pcs.) G	1/4", female	1/4", female	1/4", female	1/4", female
Cooling water quantity 7) I/min	1 to 3	1 to 3	1 to 3	1 to 3
Cooling water admission temperature °C	+5 to +35	+5 to +35	+5 to +35	+5 to +35
(°F)	(+41 to +95)	(+41 to +95)	(+41 to +95)	(+41 to +95)
Permissible cooling water pressure bar	2 to 6	2 to 6	2 to 6	2 to 6
Lubricant 8) I (qt)	1.2 (1,27)	1.2 (1,27)	1.2 (1,27)	1.2 (1,27)
Connection flange				
Inlet ISO-K	250	250	250	250
Outlet ISO-K	100	100	100	100
Weight				
WH/WHU kg (lbs)	390/410 (861/905)	390/410 (861/905)	390/410 (861/905)	390/410 (861/905)
WH with integrated FC kg (lbs)	430 (946)	430 (946)	430 (946)	430 (946)
Dimension (W x B x H)				
WH mm	1015 x 428 x 354	1015 x 428 x 354	1015 x 428 x 354	1015 x 428 x 354
(in.)	(39.96 x 16.85 x 13.94)	(39.96 x 16.85 x 13.94)	(39.96 x 16.85 x 13.94)	(39.96 x 16.85 x 13.94
WH with integrated FC mm	1076 x 570 x 354	1076 x 570 x 354 (42.36 x 22.44 x 13.94)	1076 x 570 x 354 (42.36 x 22.44 x 13.94)	1076 x 570 x 354
(in.)	,	,	,	(42.36 x 22.44 x 13.94
Noise level ⁹⁾ dB(A)	< 63	< 63	< 63	< 63

 $^{^{\}mbox{\tiny 1)}}$ Only possible with frequency converter motor or external frequency converter

²⁾ To DIN 28 426 and subsequent numbers

³⁾ Higher pressure differences are possible. Please contact Leybold (LV)

⁴⁾ Gas temperatures over 40 °C (104 °F) can result in a reduction of the pressure difference values; please consult LV on this

⁵⁾ The optional frequency converter automatically reduces the rotational speed of the rotors so as to compensate for overloads. During operation do not expose the pump to sudden pressure increases like shock venting to atmospheric pressure, for example

 $^{^{\}mbox{\tiny 6)}}$ Min. permissible speed: 1200 rpm if run for more than 1 hour

 $^{^{7)}}$ The cooling water quantity can be reduced provided the temperature of the discharged water does not exceed 45 °C (113 °F)

 $^{^{\}mbox{\scriptsize 8)}}$ Authoriative, however, is the oil level at the oil-level glass

 $^{^{9)}}$ Valid under ultimate pressure conditions. Pressures over 10 mbar (7.5 Torr) produce a higher operating noise

Technical Data WH/WHU 4400 WH/WHU 7000

	50 Hz	60 Hz	80 Hz 1)	50 Hz	60 Hz	70 Hz 1)
Nominal pumping speed ²⁾ m ³ x h ⁻¹ (cfm)	4400 (2592)	5280 (3100)	7040 (4147)	7000 (4123)	8400 (4948)	9800 (5772)
Max. effective pumping speed with backing pump DRYVAC DV 650 m³ x h⁻¹ (cfm) and RUVAC WH 2500 m³ x h⁻¹ (cfm)	, ,	3900 (2297) 4400 (2592)	4800 (2827) 5800 (3416)	4700 (2768) 5700 (3357)	5300 (3122) 6800 (4005)	5800 (3416) 7800 (4594)
Max. permissible pressure difference ^{3), 4), 5)} during continuous operation (WH) mbar (Torr) for short-cycle operation < 2 min. (WHU)		20 to 30 15.0 to 22.5)	8 to 12 (6.0 to 9.0)	20 to 30 15.0 to 22.5)	14 to 21 (10.5 to 15.75)	11 to 14 (8.25 to 10.5)
mbar (Torr)		120 (90)	- (-)	60 (45)	60 (45)	- (-)
Leak rate, integral mbar x l x s ⁻¹	1 x 10 ⁻⁵	1 x 10 ⁻⁵	1 x 10 ⁻⁵	1 x 10 ⁻⁵	1 x 10⁻⁵	1 x 10 ⁻⁵
Mains voltage FC operation Wains operation	180 to 260	340 to 530 180 to 260 ⁶⁾ 410 to 500	340 to 530 180 to 260	340 to 530 180 to 260 360 to 440	340 to 530 180 to 260 [©] 410 to 500	340 to 530 180 to 260
	180 to 220	210 to 260 ⁶⁾	_	180 to 220	210 to 260 ⁶⁾	_
Permissible ambient temperatures °C (°F)		+5 to +40 (+41 to +104)	+5 to +40 (+41 to +104)	+5 to +40 (+41 to +104)	+5 to +40 (+41 to +104)	+5 to +40 (+41 to +104)
Nominal power consumption (alternatively) FC operation kW (hp)	(14.75 / 20.12)	11.0 / 15.0 (14.75 / 20.12) 11.0 / 18.5	11.0 / 15.0 (14.75 / 20.12)	11.0 / 15.0 (14.75 / 20.12) 11.0 / 18.5	11.0 / 15.0 (14.75 / 20.12) 11.0 / 18.5	11.0 / 15.0 (14.75 / 20.12)
Mains operation kW (hp)	1	(14.75 / 24.81)	_	(14.75 / 24.81)	(14.75 / 24.81)	_
Idle mode power consumption kW (hp)	,	1.4 (1.9)	2.0 (2.7)	1.2 (1.6)	1.4 (1.9)	2.0 (2.7)
Energy efficiency class	IE 2	IE 2	IE 2	IE 2	IE 2	IE 2
Nominal speed rpm	3000	3600	4800	3000	3600	4200
Max. permissible speed 7) rpm	4800	4800	4800	4200	4200	4200
Type of protection IP	54	54	54	54	54	54
Water connection (2 pcs.)	1/4", female	1/4", female	1/4", female	1/4", female	1/4", female	1/4", female
Cooling water quantity 8) I/min	1 to 3	1 to 3	1 to 3	1 to 3	1 to 3	1 to 3
Cooling water admission temperature °C (°F)		5 to 35 (+41 to +95)	5 to 35 (+41 to +95)	5 to 35 (+41 to +95)	5 to 35 (+41 to +95)	5 to 35 (+41 to +95)
Permissible cooling water pressure bar	2 to 6	2 to 6	2 to 6	2 to 6	2 to 6	2 to 6
Lubricant ⁹ I (qt)	4.75 (5.0)	4.75 (5.0)	4.75 (5.0)	4.75 (5.0)	4.75 (5.0)	4.75 (5.0)
Connection flange Inlet ISO-K Outlet ISO-K		250 160	250 160	320 160	320 160	320 160
Weight WH kg (lbs) WHU kg (lbs)		590 (1301) 620 (1369)	590 (1301) 620 (1369)	650 (1433) 715 (1578)	650 (1433) 715 (1578)	650 (1433) 715 (1578)
Dimension (W x B x H) mm (in.)		1183 x 540 x 415 (46.57x21.26x16.34)	1183 x 540 x 415 (46.57x21.26x16.34)	1433 x 540 x 415 (56.427x21.26x16.34)	1433 x 540 x 415 (56.427x21.26x16.34)	1433 x 540 x 415 (56.427x21.26x16.34)
Noise level ¹⁰⁾ dB(A)	< 63	< 63	< 63	< 63	< 63	< 63

¹⁾ Only possible with external frequency converter

²⁾ To DIN 28 400 and subsequent numbers

³⁾ Higher pressure differences are possible. Please contact Leybold (LV)

⁴⁾ Gas temperatures over 40 °C (104 °F) can result in a reduction of the pressure difference values; please consult LV on this

The optional frequency converter automatically reduces the rotational speed of the rotors so as to compensate for overloads. During operation do not expose the pump to sudden pressure increases like shock venting to atmospheric pressure, for example

⁶⁾ Requires 200 V FC variant and 200 V motor

 $^{^{7)}\,\,}$ Min. permissible speed: 1200 rpm if run for more than 1 hour

⁸⁾ The cooling water quantity can be reduced provided the temperature of the discharged water does not exceed 45 °C (113 °F)

 $^{^{\}rm 9)}$ $\,$ Authoriative, however, is the oil level at the oil-level glass

¹⁰⁾ Valid under ultimate pressure conditions. Pressures over 10 mbar (7.5 Torr) produce a higher operating noise

Ordering Information

RUVAC WH/WHU

2500

	Part No.
Roots vacuum pump	
RUVAC WH	
400 V	
int. FC	
PFPE oil (LVO 410)	4== 0=01
gear side 1)	155 250V
motor side	155 251V
Ester oil (LVO 210)	455.0501
gear side ¹⁾ motor side	155 252V 155 253V
	133 233V
ext. FC PFPE oil (LVO 410)	
gear side 1)	155 260V
motor side	155 261V
Ester oil (LVO 210)	
gear side 1)	155 262V
motor side	155 263V
without FC, DOL 2)	
PFPE oil (LVO 410)	
gear side 1)	155 270V
motor side	155 271V
Ester oil (LVO 210)	
gear side 1)	155 272V
motor side	155 273V
200 V, ext. FC	
PFPE oil (LVO 410)	455.005V
gear side ¹⁾ motor side	155 265V 155 264V
RUVAC WHU	133 2044
without FC, DOL 2)	
PFPE-Öl (LVO 410)	
400 V	
gear side 1)	155 280V
motor side	155 281V
200 V	
gear side 1)	155 284V
motor side	155 285V

¹⁾ Discharge flange on the motor, respectively gear side

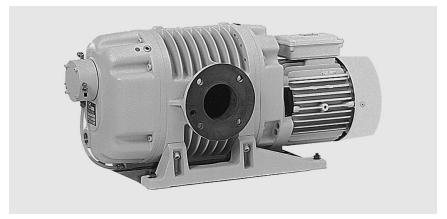
Ordering Information

RUVAC WH/WHU

	4400	7000
	Part No.	Part No.
Roots vacuum pump		
RUVAC WH-Ester oil (LVO 210) 11.0 kW, 400 V 18.5 kW, 400 V 18.5 kW, heavy duty ¹⁾ 18.5 kW, heavy duty, ATEX Cat. 2i ¹⁾	155 150 - 155 154V -	155 160 155 167 155 163V 155 163V11
RUVAC WH-PFPE oil (LVO 400), 11.0 kW 400 V 200 V	155 155 155 156	155 165 155 164V
RUVAC WH-Ester oil (LVO 210), 11.0 kW 200 V	155 151V	155 161V
RUVAC WHU, 18.5 kW, bypass valve Ester oil (LVO 210) PFPE oil (LVO 400)	155 158V 155 153	155 162 -

With large motor, gas-sealed impellers and purge gas option

²⁾ DOL is the mains power version for direct connection to 50 or 60 Hz mains power


Ordering Information

RUVAC WH/WHU

	2500	4400	7000
	Part No.	Part No.	Part No.
Accessories			
Frequency converter, inclusive mains filter 11 kW / 200 V 11 kW / 400 V 18 kW / 400 V	155 231V 155 230V	155 193V 155 191V 155 192V	155 193V 155 191V 155 192V
LCD display (for Part. No. 155 191V, 155 192V and 155 193V)	- 155 213V	155 213V	155 192V
USB copy unit (for Part. No. 155 191V, 155 192V and 155 193V)	155 214V	155 214V	155 214V
Profibus DP module ¹⁾ (for Part. No. 155 191V, 155 192V and 155 193V)	155 212V	155 212V	155 212V
ProfiNet module for (DRYVAC/LEYVAC/RUVAC)	112005A35	112005A35	112005A35
EtherCAT module for (DRYVAC/LEYVAC/RUVAC)	112005A36	112005A36	112005A36
Relay module (digital output) for (DRYVAC/LEYVAC/RUVAC)	112005A01	112005A01	112005A01
Ethernet interface board for (DRYVAC/LEYVAC/RUVAC)	112005A02	112005A02	112005A02
Pump feet set for horizontal operation	-	155 181V	155 181V
Gear chamber evacuation kit for WHU pumps	-	155 183V	155 183V
Spare Parts	,		
Major maintenance kit	EK 110 003 000	EK 110 002 828	EK 110 002 828
Spare motor, 400 V 11.0 kW 15.0 kW	- upon request	E 110 000 406	E 110 000 406
18.5 kW	-	E 110 000 405	E 110 000 405

¹⁾ For further bus options please contact Leybold Sales

RUVAC WSLF Roots Vacuum Pumps for Laser Gas Systems

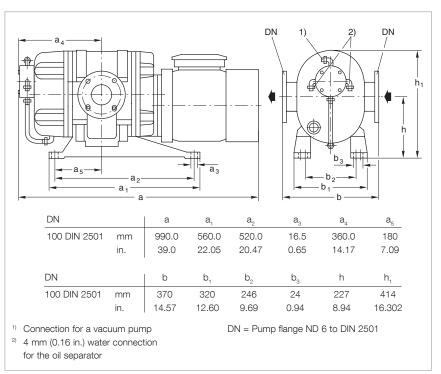
Roots vacuum pumps driven by canned motors are available for gas laser systems.

RUVAC WSLF 1001 LF Roots vacuum pump

Advantages to the User

- A gas mixture of helium, nitrogen and carbon monoxide is continuously circulated at a reduced system pressure
- High pumping speed from a small, quiet running pump
- Operation with a frequency converter is possible
- Nickel-plated pump chamber surfaces
- Through an additional vacuum pump the bearing chambers may be evacuated to a pressure lower than the pressure within the pumping chamber of the RUVAC
- Water-cooled oil separating system
- Integrated oil separating system for extended maintenance intervals

Typical Applications


 Processing of ferrous and nonferrous materials like welding, cutting and surface refinement

Technical Note

 The gas circulation system must be very clean and entirely free of hydrocarbons

Supplied Equipment

- Horizontal pumping action as standard
- With oil pressure switch and oil drain facility
- The required lubricant is included separately (LEYBONOL LVO 220)
- Purged with nitrogen for corrosion protection

Dimensional drawing for the RUVAC WSLF 1001 pump

Technical Data WSLF 1001

	50 Hz	60 Hz
Nominal pumping speed ¹⁾ m ³ x h ⁻¹ (cfm)	1000 (589)	1200 (707)
Max. permissible pressure difference		
during continuous operation mbar (Torr)	80 (60)	80 (60)
Mains supply		
V/Y V	200-230 / 400	200-265 / 460
Motor power kW (hp)	7.5 (10.2)	8.5 (11.6)
Nominal speed rpm	3000	3600
Max. permissible speed rpm	6000	6000
Type of protection IP	20	20
Cooling water pressure bar (psi)	1 to 5 (14.5 to 72.5)	1 to 5 (14.5 to 72.5)
Cooling water throughput $I \times h^{-1}$ (cfm)	200.0 (0.9)	200.0 (0.9)
Hose connection for hose	6 x 1	6 x 1
Lubricant of the bearing chambers I (qt)	1.2 (1.27)	1.2 (1.27)
Connection flange DIN 2501 DN	100	100
Weight kg (lbs)	275 (606.4)	275 (606.4)

Ordering Information

WSLF 1001

	Part No.
RUVAC WSLF Roots vacuum pump RUVAC WSLF 1001	117 94
Spare Parts	
RUVAC WSLF seal kit	194 70

¹⁾ To DIN 28 400 and subsequent numbers

Accessories

Pressure Switches

The RUVAC vacuum pumps may be switched on and off automatically through a pressure switch driven by a SV 110 switching amplifier and a contactor.

The pressure switch may be installed in the intake of the RUVAC using a screw-in adaptor, an elbow and two centering and two clamping rings.

Upon request the pressure switch may be set by Leybold to a fixed value. Please state this pressure value in your order.

Ordering Information

Pressure Switches

	Part No.
Pressure switch	
PS 115, adjustable setting	160 04
Pressure switch setting	160 05
Accessories for fitting	
the PS 115pressure switch	
Screw-in adaptor DN 16 ISO-KF,	
M 16 x 1.5 mm (0.06 in.)	168 40
Elbow DN 16 KF	184 36
Centering ring DN 16 KF (2 are required)	183 26
Clamping ring DN 16 KF (2 are required)	183 41
SV 110 switching amplifier (for PS 114/115)	160 78
Oil pressure switch for	
RUVAC WSLF 1001 and WS-PFPE	194 82

Temperature Sensor Pt100

The temperature sensor measures the gas temperature at the centre of the RUVAC delivery flange.

Depending on the size of the RUVAC pump, respectively it's flange size, the Pt100 sensor is fitted at different positions.

Ordering Information

Temperature Sensor

	Part No.
Temperature sensor Pt100	155 010

Notes Control of the

Miscellaneous

Services

On-site Replacement of the Dynamic Seals (with oil LVO 100) *)

The on-site replacement of the dynamic seals includes the following:

Oil change (standard oil LVO 100), partial disassembly of the pump, replacement of the complete shaft seal, visual inspection of the subassemblies, electrical safety test, test run including check of the attained ultimate pressure levels (depending on the installation situation)

Ordering Information

On-site Replacement of the Dynamic Seals (with oil LVO 100) *)

	Part No.
For pump	
WA/WAU 151/251	AS 1181 F
WA/WAU 501	AS 1182 F
WA/WAU 1001	AS 1183 F
WA/WAU 2001	AS 1184 F

Small On-site Maintenance (with oil LVO 100) *)

The small on-site maintenance includes the following:

Oil change (standard oil LVO 100), visual inspection of the subassemblies, electrical safety test, test run including check of the attained ultimate pressure levels (depending on the installation situation)

Ordering Information

Small On-site Maintenance (with oil LVO 100) *)

	Part No.
For pump	
WA/WS 151/251	AS 1185 F
WA/WS 501	AS 1186 F
WA/WS 1001	AS 1187 F
WA/WS 2001	AS 1188 F

*) Notes on our on-site after sales service

The listed services include the costs for material and working hours on site for standard RUVAC pumps. Services for pump variants upon request.

Transportation and travelling expenses are invoiced at cost. All services refer to the repair of freely accessible and not contaminated vacuum components.

Complete Refurbishing at the Service Centre (with oil LVO 100)

Complete refurbishing at the service centre includes the following:

Disassembly of the pump, cleaning of all individual components including visual inspection, machined reworking of the housing sections; if required rebalancing of the pair of impellers, replacement of the wearing parts, assembly of the pump including new seals and standard oil LVO 100, electrical safety test, test run including check of the attained ultimate pressure levels.

Ordering Information

Complete Refurbishing at the Service Centre (with oil LVO 100)

	Part No.	
For pump		
WA 151/251	AS 1189	
WA 501	AS 1190	
WA 1001	AS 1191	
WA 2001	AS 1192	
WS 151/251	AS 1193	
WS 501	AS 1194	
WS 1001	AS 1195	
WS 2001	AS 1196	
WAU 151/251	AS 1197	
WAU 501	AS 1198	
WAU 1001	AS 1199	
WAU 2001	AS 1200	
WSU 151/251	AS 1201	
WSU 501	AS 1202	
WSU 1001	AS 1203	
WSU 2001	AS 1204	

Complete Refurbishing with Decontamination at the Service Centre (with oil LVO 100)

Complete refurbishing with decontamination at the service centre includes the following:

Disassembly of the pump, cleaning and decontamination of all individual components, visual inspection of all components, machined reworking of the housing sections; if required rebalancing of the pair of impellers, replacement of the wearing parts, assembly of the pump including new seals and standard oil LVO 100, electrical safety test, test run including check of the attained ultimate pressure levels.

Ordering Information

Complete Refurbishing with Decontamination at the Service Centre (with oil LVO 100)

	Part No.
For pump	
WA 151/251	AS 1189 D
WA 501	AS 1190 D
WA 1001	AS 1191 D
WA 2001	AS 1192 D
WS 151/251	AS 1193 D
WS 501	AS 1194 D
WS 1001	AS 1195 D
WS 2001	AS 1196 D
WAU 151/251	AS 1197 D
WAU 501	AS 1198 D
WAU 1001	AS 1199 D
WAU 2001	AS 1200 D
WSU 151/251	AS 1201 D
WSU 501	AS 1202 D
WSU 1001	AS 1203 D
WSU 2001	AS 1204 D

Sales and Service

Germany

Leybold GmbHSales, Service, Support Center (3SC) Bonner Strasse 498 D-50968 Cologne +49-(0)221-347 1234 +49-(0)221-347 31234

sales@leybold.com www.leybold.com

Levbold GmbH Sales Area North

Branch Office Berlin Industriestrasse 10b D-12099 Berlin

+49-(0)30-435 609 0 +49-(0)30-435 609 10 sales.bn@leybold.com

Levbold GmbH Sales Office South

Branch Office Munich Karl-Hammerschmidt-Strasse 34 D-85609 Aschheim-Dornach T: +49-(0)89-357 33 9-10 F: +49-(0)89-357 33 9-33 sales.mn@leybold.com service.mn@leybold.com

Levbold Dresden GmbH Service Competence Center

Zur Wetterwarte 50, Haus 304 D-01109 Dresden Service:

+49-(0)351-88 55 00 +49-(0)351-88 55 041 info.dr@leybold.com

Europe

Belgium

Leybold Nederland B.V. Belgisch bijkantoor

Leuvensesteenweg 542-9A B-1930 Zaventem

Sales: +32-2-711 00 83 +32-2-720 83 38 sales.zv@leybold.com

Service: T: +32-2-711 00 82 F: +32-2-720 83 38 service.zv@leybold.com

Levbold France S.A.S.

Parc du Technopolis, Bâtiment Beta , Avenue du Canada -91940 Les Ulis cedex Sales and Service: T: +33-1-69 82 48 00 F: +33-1-69 07 57 38 info.ctb@leybold.com sales.ctb@leybold.com

Leybold France S.A.S.

Valence Factory 640, Rue A. Bergès B.P. 107

B.F. 107 F-26501 Bourg-lès-Valence Cedex T: +33-4-75 82 33 00 F: +33-4-75 82 92 69 marketing.vc@leybold.com

Great Britain

Leybold UK LTD.

Unit 9 Silverglade Business Park Leatherhead Road Chessington Surrey (London) KT9 2QL Sales: T:

+44-13-7273 7300 +44-13-7273 7301 sales.ln@leybold.com Service:

. +44-13-7273 7320 +44-13-7273 7303 service.ln@leybold.com

Leybold Italia S.r.l.

Via Trasimeno 8 I-20128 Mailand Sales:

+39-02-27 22 31 +39-02-27 20 96 41 T: sales.mi@leybold.com Service: +39-02-27 22 31 +39-02-27 22 32 17

service.mi@leybold.com

Netherlands

Leybold Nederland B.V.

Floridadreef 102 NL-3565 AM Utrecht Sales and Service: T: +31-(30) 242 63 30 +31-(30) 242 63 31 sales.ut@leybold.com service.ut@leybold.com

Leybold Schweiz AG, Pfäffikon

Churerstrasse 120 CH-8808 Pfäffikon Warehouse and shipping address: Riedthofstrasse 214 CH-8105 Regensdorf Sales:

+41-44-308 40 50 +41-44-302 43 73 sales.zh@leybold.com Service:

+41-44-308 40 62 +41-44-308 40 60 service.zh@leybold.com

Leybold Spain, S.A.

C/. Huelva, 7 E-08940 Cornellà de Llobregat (Barcelona) Sales:

+34-93-666 43 11 +34-93-666 43 70 Ť: sales.ba@leybold.com Service:

+34-93-666 46 11 +34-93-685 43 70 service.ba@leybold.com

America

USA

Leybold USA Inc. 5700 Mellon Road

USA-Export, PA 15632 +1-724-327-5700 +1-724-325-3577 info.ex@leybold.com Sales: +1-724-327-5700 +1-724-333-1217 Service: . +1-724-327-5700 +1-724-325-3577

Leybold do Brasil

Rod. Vice-Prefeito Hermenegildo Tonolli, nº. 4413 - 6B Distrito Industrial Jundiaí - SP CEP 13.213-086 Sales and Service: T: +55 11 3395 3180 F: +55 11 99467 5934 sales.ju@leybold.com service.ju@leybold.com

Asia

P. R. China

Leybold (Tianjin)

International Trade Co. Ltd. Beichen Economic Development Area (BEDA), No. 8 Western Shuangchen Road Tianjin 300400 China

Griffia Sales and Service: T: +86-22-2697 0808 F: +86-22-2697 4061 F: +86-22-2697 2017 sales.tj@leybold.com service.tj@leybold.com

Leybold India Pvt Ltd.

No. 82(P), 4th Phase K.I.A.D.B. Plot Bommasandra Industrial Area Bangalore - 560 099 Sales and Service: T: +91-80-2783 9925 F: +91-80-2783 9926 sales.bgl@leybold.com service.bgl@leybold.com

Leybold Japan Co., Ltd.

Headquarters Shin-Yokohama A.K.Bldg., 4th floor 3-23-3, Shin-Yokohama Kohoku-ku, Yokohama-shi Kanawaga 222-0033 Japan Sales:

+81-45-471-3330 +81-45-471-3323 sales.yh@leybold.com

Leybold Japan Co., Ltd.

Tsukuba Technical Service Center 1959, Kami-yokoba Tsukuba-shi, Ibaraki-shi 305-0854 Japan Service: +81-29 839 5480 +81-29 839 5485

Malaysia

Leybold Malaysia Leybold Singapore Pte Ltd.No. 1 Jalan Hi-Tech 2/6

service.iik@leybold.com

Kulim Hi-Tech Park Kulim, Kedah Darul Aman 09000 Malaysia Sales and Service: +604 4020 222 +604 4020 221 sales.ku@leybold.com service.ku@leybold.com

South Korea

Leybold Korea Ltd.

3E Jellzone 2 Towe Jeongja-dong 159-4 Bundang-gu Sungnam-si Gyeonggi-do Bundang 463-384, Korea Sales:

+82-31 785 1367 +82-31 785 1359 sales.bd@leybold.com Service: 623-7, Upsung-Dong Cheonan-Si Chungcheongnam-Do Korea 330-290 T: +82-41 589 3035 F: +82-41 588 0166 service.cn@leybold.com

Singapore

Leybold Singapore Pte Ltd. 8 Commonwealth Lane #01-01

Singapore 149555 Singapore Sales and Service: +65-6303 7030 +65-6773 0039 sales.sg@leybold.com service.sg@leybold.com

Taiwan

Leybold Taiwan Ltd. No 416-1, Sec. 3 Chunghsin Rd., Chutung Hsinchu County 310 Taiwan, R.O.C. Sales and Service: +886-3-500 1688 +886-3-583 3999 sales.hc@leybold.com service.hc@leybold.com

Headquarter Leybold GmbH

Bonner Strasse 498 D-50968 Cologne T: +49-(0)221-347-0 F: +49-(0)221-347-1250 info@levbold.com

