Turbo-V750 and Turbo-V 850 TwisTorr
The new molecular-drag technology
TwisTorr
The new molecular-drag technology

2010 • Today Varian, now a part of Agilent Technologies, presents the new TwisTorr molecular drag technology based on its well-known hybrid Turbo Molecular Pump design, introducing a spiral drag section that achieves unmatched performance in both pumping speed and compression ratio in the most compact space available. New state-of-the-art electronics complete this industry leading Turbo Molecular Pump innovation

2003 • With the Turbo-V 2K-G Varian introduces a fully integrated Turbo pumping system

1996 • Introduction by Varian of microprocessor-based on-board controller units: Navigator line

1991 • Varian introduces a new hybrid type Turbo Molecular Pump: one monolythic rotor provides both high speed (Turbo stages) and high foreline tolerance (MacroTorr® stages)
• Use of ceramic ball bearings with life-time lubrication using a proprietary dry solid lubricant

1986 • Varian begins collaboration with Elettrorava for technology and know-how transfer

1980 • Introduction of ceramic ball bearing technology
• Compound Turbo Molecular Pumps appear, combining a Turbo section with a Drag section

1970 • Snecma design commercialized by Elettrorava, with manufacturing based in Turin, Italy

1965 • First prototype of axial flow turbo pump (Snecma), with open thin blades
• This design is the basis for modern TMP technology

1960 • Theoretical basis for the pumping mechanism of axial flow impeller (Shapiro and Kruger, MIT)

1958 First Turbo Molecular pumps developed using experimental design:
• Double-Ended design (Becker), based on a closed cell design using thick rotor and stator blades (this design was abandoned in the late ‘70s)
• Axial flow pumping principle, demonstrated in the high vacuum regime (Hablanian)

EARLY 1900 First Molecular Drag pumps
• 1912 W.Gaede
• 1922 F.Holweck
• 1929 M.Siegbahn
WHAT IS TWISTORR

TwisTorr Technology

- Pumping effect is created by a spinning rotor disk which transfers momentum to gas molecules.
- Gas molecules are forced to follow spiral groove design on the stator. The specific design of the channel ensures constant local pumping speed and avoids reverse pressure gradients, minimizing power consumption.

Space Saving Design

- Our rotor is based on the proven Varian monolithic rotor design which positions the TwisTorr Stator between two smooth spinning disks and therefore exploits the pumping action by both disk surfaces in series.
- The double-sided spiral groove design on the TwisTorr stators combines centripetal and centrifugal pumping action in series, greatly reducing the size of the drag section.

Compression ratio

- Compression ratio for N₂ of a single TwisTorr stage can increase up to a factor of 100 with respect to a MacroTorr® stage of the same space and rotor speed, without reducing foreline tolerance and pumping speed.
TwisTorr

Key features

Leading edge performance

- The new Turbo-V 750 and Turbo-V 850 TwisTorr offer the highest pumping speed in their category for all gases.
- The state of the art TwisTorr technology also achieves the highest compression ratios for light gases in a commercially available Turbo Molecular Pump.
- While offering the highest performance, average power consumption by this new drag section design is reduced by at least 20% compared with previous designs.

Powerful, compact solution

- The new high performing ultra-compact TwisTorr drag stages permit a compact Rotor design. This enables us to use rotors that are 40% lower in height and weight compared with competitive rotors (using traditional Holweck drag technology).
- The compact rotor design in combination with the new integrated drive electronics allow us to offer a unique solution in a package with a smaller footprint than any Turbo Molecular Pump solution available till now (with or without integrated drive electronics).
- Quick and easy pump installation is made possible by the small footprint, integrated electronics and the possibility of quickly adding optional devices such as an air cooling fan or automatic purge/vent kit connected to and fully controlled by the integrated electronics.

Advanced electronics

- We offer two different pump solutions:
 - Pumping system with a fully integrated state of the art 48Vdc controller and separate 48Vdc power supply
 - Stand-alone pump with a universal voltage rack type display controller unit, also capable of reading up to two active gauges
- Both controller solutions offer the following features:
 - Logical I/O and serial (RS232/485) communication interfaces
 - Rotational frequency regulation between 350Hz and 825Hz
 - Gas type and cooling mode dependent power control
 - Optional Purge/Vent device that allows for a controlled pump slow down with a modulated vent procedure, in combination with Stop Speed Reading (SSR) function, and purge to protect bearings against dust and corrosive gases
 - T-Plus interface SoftWare for full PC/Laptop control with new Embedded Data Logger Manager function that enables easy data download and graphical display
Design for Reliability

• VACUUM PERFORMANCE
 Advanced rotor design in combination with TwisTorr technology has allowed us to reduce the number of pumping stages by 30% compared to conventional designs. The result is a more compact, lighter rotor with improved overall vacuum performance. This compact rotor design also leads to an improved dynamic stability of the rotor and a reduced mechanical load on the suspension.

• LOW STRESS ROTOR
 Our unique monolithic rotor is fully automatically machined out of one single piece of advanced high strength aluminium alloy according to our proprietary design. This highly precise process reduces material stress and improves assembly tolerances compared with a traditional stacked rotor design, in which single rotor bladed stages are assembled on a shaft. Our new proprietary inverted shaft fitting process ensures tensile stress-free rotor to shaft connection, reducing stress by 60% compared to traditional fitting.

• PUMP EFFICIENCY
 The new 48Vdc electrical motor driven by a dedicated Field Oriented Control algorithm reduces start-up time and improves pump stability under changing gas load conditions. The improved drive efficiency allows higher vacuum performance while reducing average electrical power consumption by 10%.

• PUMP COOLING AND TEMPERATURE CONTROL
 State of the art rotor design with improved motor efficiency allows delivery of higher vacuum performance with lower heat dissipation inside the pump. A further improvement to average lower running temperatures comes from improved cooling systems. Our new water cooling solution uses a stainless steel cooling channel fitted inside the pump body using a new mandrel fitting technology. This new solution prevents corrosion and clogging of the water channel. Our new Air-Cooling fan shroud, shaped around the contours of our pump body, optimizes the airflow along the pump surface.

Clean maintenance-free vacuum

• Modern research and scientific applications require the cleanest vacuum solutions. For these applications we offer our unique UHV-compatible Turbo Molecular Pump design. In our Turbo Molecular Pumps no suspension components are exposed to the UHV side of the system and there are no permanent magnetic bearings that could otherwise negatively disturb the experimental chamber.

• Our high-precision ceramic ball bearings are both installed on the fore vacuum side of the pump and permanently lubricated with our unique proprietary solid lubricant characterized by an extremely low vapor pressure. This solution is completely maintenance free and allows for installation of the pump in any orientation.

• In our family of Turbo Molecular Pumps there is no free oil present for bearing lubrication, eliminating the need for refills and the risk of vacuum chamber contamination.
Turbo-V 750 TwistTorr System

Vacuum Performances

<table>
<thead>
<tr>
<th>Gas</th>
<th>Pumping Speed [L/s]</th>
<th>Compression Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>N₂</td>
<td>700</td>
<td>(1 \times 10^{11})</td>
</tr>
<tr>
<td>Ar</td>
<td>680</td>
<td>(1 \times 10^{11})</td>
</tr>
<tr>
<td>He</td>
<td>680</td>
<td>(2 \times 10^{8})</td>
</tr>
<tr>
<td>H₂</td>
<td>580</td>
<td>(2.5 \times 10^{6})</td>
</tr>
</tbody>
</table>

- Base pressure*: \(<1 \times 10^{-10} \text{ mbar}\)
- Max foreline pressure: N₂ = 6 mbar

Other

- Rotational speed: Selectable from 350 Hz to 825 Hz
- Start up time: \(<3 \text{ min}\)
- Recommended forepump: PTS300, DS302
- Operational position: Any
- Cooling options: Forced Air (up to 35 °C ambient temp.), Water (corrosion resistant loop)
- Max flange temperature during bake-out: 120°C (CFF), 80°C (ISO)
- Noise level (pump at full speed, no load): FAN off \(<52 \text{ dB(A)}\) at 1 meter, FAN on \(<55 \text{ dB(A)}\) at 1 meter
- Storage temperature: -20 °C to +70 °C
- Certifications: CE, CSA, RHOS

Controller Specifications

- Controller type: Fully integrated electronics
- Motor control mode: Field Oriented Control (FOC)
- Input voltage: 48 Vdc (± 10%)
- Maximum input power: 450 W
- Maximum output power: 400 W (pump ramp-up), 300 W (water cooling), 200 W (forced air cooling)
- Input voltage for power supply: 100 – 240 Vac (± 10%)
- Maximum input power for power supply: 550 VA
- Maximum operating power for power supply: 450 W
- Interface: Navigator standard remote I/O, RS 232, RS 485 serial, Can accept Profibus external device
- Protection category: IP 54
- Data Logger: Standard
- Stop speed reading: Standard
- Automated Purge/Vent device control: Standard
- Leak Detector Mode function: Standard

Technical Specifications

Ordering Information

Pumping Systems
- 969-8813 Turbo-V 750 ISO 160K On-Board
- 969-8814 Turbo-V 750 CFF 8” On-Board
- 969-8818 Turbo-V 750 ISO 160F On-Board

Accessories
- 969-6521 Turbo-V 750/850 TwistTorr Power Supply (5 m Cable)
- 969-9958 Mains Cable NEMA Plug, 3m long
- 969-9957 Mains Cable European Plug, 3m long
- 969-6502 Turbo-V 750/850 TwistTorr Purge/Vent Device
- 969-6503 Turbo-V 750/850 TwistTorr Fan
- 969-9883 T-Plus software and serial cable
- 969-9304 Inlet Screen ISO 160 and CFF 8”
- 969-9347 Water Cooling Kit (Plastic Model)
- 969-9337 Water Cooling Kit (Metallic Model)
- 969-9345 Vibration Isolator, ISO 160
- 969-9335 Vibration Isolator, CF 8”
- 969-9108 Vent Flange, NW 10 KF / M8
- 969-9239 Purge Valve with KF16-M12 10 SCCM
- 969-9240 Purge Valve with 7/16-M12 10 SCCM
- 969-9241 Purge Valve KF16-M12 20 SCCM
- 969-9242 Purge Valve 7/16-M12 20 SCCM
- 969-9261 External Profibus TMP Gateway
- 949-9325 Forepump DS 302, with 1 ph., universal motor
- PTS03001UNIV Triscroll Dry Vacuum Pump PTS 300 single phase, universal motor
- PTS03003UNIV Triscroll Dry Vacuum Pump PTS 300 3 phase, universal motor

Controller Specifications

- Controller Type: Fully integrated electronics
- Motor control mode: Field Oriented Control (FOC)
- Input voltage: 48 Vdc (± 10%)
- Maximum input power: 450 W
- Maximum output power: 400 W (pump ramp-up), 300 W (water cooling), 200 W (forced air cooling)
- Input voltage for power supply: 100 – 240 Vac (± 10%)
- Maximum input power for power supply: 550 VA
- Maximum operating power for power supply: 450 W
- Interface: Navigator standard remote I/O, RS 232, RS 485 serial, Can accept Profibus external device
- Protection category: IP 54
- Data Logger: Standard
- Stop speed reading: Standard
- Automated Purge/Vent device control: Standard
- Leak Detector Mode function: Standard

*: According to Pneurop 5608 III, TS 300 PRIMARY PUMP, NO INLET SCREEN
Varian, Inc. Vacuum Technologies

COMPRESSION RATIO vs FORELINE PRESSURE

<table>
<thead>
<tr>
<th>Inlet Pressure [mbar]</th>
<th>Nitrogen</th>
<th>Argon</th>
<th>Helium</th>
<th>Hydrogen</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>2</td>
<td>1.5</td>
<td>1.2</td>
<td>1.0</td>
</tr>
<tr>
<td>10</td>
<td>2.5</td>
<td>2.0</td>
<td>1.7</td>
<td>1.5</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2.5</td>
<td>2.2</td>
<td>1.9</td>
</tr>
</tbody>
</table>

PUMPING SPEED

<table>
<thead>
<tr>
<th>Inlet Pressure [mbar]</th>
<th>Nitrogen</th>
<th>Argon</th>
<th>Helium</th>
<th>Hydrogen</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>100</td>
<td>90</td>
<td>80</td>
<td>70</td>
</tr>
<tr>
<td>10</td>
<td>90</td>
<td>80</td>
<td>70</td>
<td>60</td>
</tr>
<tr>
<td>1</td>
<td>80</td>
<td>70</td>
<td>60</td>
<td>50</td>
</tr>
</tbody>
</table>

OUTLINE DRAWING

<table>
<thead>
<tr>
<th>Model</th>
<th>Inlet Flange</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>969-8813</td>
<td>ISO 160K</td>
<td>253.8 [9,99]</td>
<td>Ø179.9 [7,08]</td>
<td>KF 25</td>
</tr>
<tr>
<td>969-8814</td>
<td>CFF 8"</td>
<td>264.2 [10,4]</td>
<td>Ø202.4 [7,97]</td>
<td>KF 25</td>
</tr>
<tr>
<td>969-8818</td>
<td>ISO 160F</td>
<td>262.7 [10,34]</td>
<td>Ø225 [8,86]</td>
<td>KF 25</td>
</tr>
</tbody>
</table>

Dimensions: millimeters [inches]
Turbo-V 850 TwisTorr System

Vacuum Performances
- **Pumping speed for N₂**: N₂ = 750 L/s
- **Pumping speed for Ar**: Ar = 700 L/s
- **Pumping speed for He**: He = 690 L/s
- **Pumping speed for H₂**: H₂ = 590 L/s
- **Compression ratio for N₂**: N₂ = 1 x 10¹¹
- **Compression ratio for Ar**: Ar > 1 x 10¹¹
- **Compression ratio for He**: He = 2 x 10⁸
- **Compression ratio for H₂**: H₂ = 2.5 x 10⁶
- **Base pressure**: <1 x 10⁻¹⁰ mbar (with minimum recommended forepump)
- **Max foreline pressure for N₂**: 6 mbar
- **Inlet Flange size**:
 - ISO 200K, CFF 10”, ISO 200F
- **Foreline flange**:
 - KF25 (ISO 200K, CFF 10”)
 - KF40 (ISO 200F)

Other
- **Rotational speed**: Selectable from 350 Hz to 825 Hz
- **Start up time (90% of full speed)**: < 3 min
- **Recommended forepump**: PTS300, DS302
- **Operational position**: Any
- **Cooling options**:
 - Forced Air (up to 35 °C ambient temp.)
 - Water (corrosion resistant loop)
- **Max flange temperature during bake-out (no gas flow)**: 120°C (CFF), 80°C (ISO)
- **Noise level (pump at full speed, no load)**:
 - FAN off: < 52 dB(A) at 1 meter
 - FAN on: < 55 dB(A) at 1 meter
- **Storage temperature**: -20 °C to +70 °C
- **Certifications**: CE, CSA, RHOS
- **Purge and Vent**:
 - Standard Purge & Vent ports
 - Automated Purge/Vent device (accessory)
- **Weight (with integrated controller)**:
 - ISO 200 K = 16.1 Kg
 - CF 10” = 22.6 Kg

Controller Specifications
- **Controller type**: Fully integrated electronics
- **Motor control mode**: Field Oriented Control (FOC)
- **Input voltage**: 48 Vdc (± 10%)
- **Maximum input power**: 450 W
- **Maximum output power**: 400 W (pump ramp-up)
 - 300 W (water cooling)
 - 200 W (forced air cooling)
- **Input voltage for power supply**: 100 – 240 Vac (± 10%)
- **Input frequency for power supply**: 50 – 60 Hz
- **Maximum input power for power supply**: 550 VA
- **Maximum operating power for power supply**: 450 W
- **Interface**:
 - Navigator standard remote I/O
 - RS 232, RS 485 serial
 - Can accept Profibus external device
- **Protection category**: IP 54
- **Data Logger**: Standard
- **Stop speed reading**: Standard
- **Automated Purge/Vent device control**: Standard
- **Leak Detector Mode function**: Standard

Ordering Information

Pumping Systems
- 969-8815 TURBO-V 850 ISO 200K ON-BOARD
- 969-8816 TURBO-V 850 CFF10” ON-BOARD
- 969-8819 TURBO-V 750 ISO 200F ON-BOARD

Accessories
- 969-6521 TURBO-V 750/850 TWISTORR POWER SUPPLY (5 m CABLE)
- 969-9958 Mains cable NEMA Plug, 3m long
- 969-9957 Mains cable European Plug, 3m long
- 969-6502 Turbo-V 750/850 TwisTorr Purge/Vent Device
- 969-6503 Turbo-V 750/850 TwisTorr Fan
- 969-9883 T-Plus software and serial cable
- 969-9316 Inlet screen ISO 200 and CFF 10”
- 969-9347 Water cooling kit (plastic model)
- 969-9337 Water cooling kit (metallic model)
- 969-9346 Vibration isolator, ISO 200
- 969-9336 Vibration isolator, CF 10”
- 969-9108 Vent flange, NW 10 KF / M8
- 969-9239 Purge valve with KF16-M12 10 SCCM
- 969-9240 Purge valve with 7/16-M12 10 SCCM
- 969-9241 Purge valve KF16-M12 20 SCCM
- 969-9242 Purge valve 7/16-M12 20 SCCM
- 969-9261 External Profibus TMP gateway
- 949-9325 Forepump DS 302, with 1 ph., universal motor
- PTS030001UNIV Triscroll Dry Vacuum Pump PTS 300 single phase, universal motor
- PTS030003UNIV Triscroll Dry Vacuum Pump PTS 300 3 phase, universal motor

(*) According to Pneurop 5608 III, TS 300 PRIMARY PUMP, NO INLET SCREEN
Turbo-V 750 TwisTorr Rack

Ordering Information

Pumps
- 969-6013 TURBO-V 750 ISO 160K RACK
- 969-6014 TURBO-V 750 CFF 8” RACK
- 969-6017 TURBO-V 750 ISO 160F RACK
- 969-6018 TURBO-V 750 ISO 160F RACK

Controllers
- 969-9525 TURBO-V 750/850-AG RACK CNT
- 969-9526 TURBO-V 750/850-AG RACK CNT PROFIBUS

Accessories
- 969-9958 Mains cable NEMA Plug, 3m long
- 969-9957 Mains cable European Plug, 3m long
- 969-6502 Turbo-V 750/850 TwisTorr Purge/Vent Device
- 969-6503 Turbo-V 750/850 TwisTorr Fan
- 969-6504 Turbo-V 750/850 TwisTorr Purge/Vent 5 M Extension Cable
- 969-6505 Turbo-V 750/850 TwisTorr Purge/Vent 15 M Extension Cable
- 969-6506 Turbo-V 750/850 TwisTorr Purge/Vent 25 M Extension Cable
- 969-6514 Turbo-V 750/850 TwisTorr Fan 5 M Extension Cable
- 969-6515 Turbo-V 750/850 TwisTorr Fan 15 M Extension Cable
- 969-6516 Turbo-V 750/850 TwisTorr Fan 25 M Extension Cable
- 969-6518 Turbo-V 750/850 TwisTorr 10 M Pump Extension Cable
- 969-6519 Turbo-V 750/850 TwisTorr 20 M Pump Extension Cable
- 969-9883 T-Plus software and serial cable
- 969-9304 Inlet screen ISO 160 and CFF 8”
- 969-9302 Inlet screen CFF 6”
- 969-9347 Water cooling kit (plastic model)
- 969-9337 Water cooling kit (metallic model)
- 969-9345 Vibration isolator, ISO 160
- 969-9334 Vibration isolator, CFF 6”
- 969-9335 Vibration isolator, CF 8”
- 969-9108 Vent flange, NW 10 KF / M8
- 969-9239 Purge valve with KF16-M12 10 SCCM
- 969-9240 Purge valve with 7/16-M12 10 SCCM
- 969-9241 Purge valve KF16-M12 20 SCCM
- 969-9242 Purge valve 7/16-M12 20 SCCM
- 949-9325 Forepump DS 302, with 1 ph., universal motor
- PTS03001UNIV Triscroll Dry Vacuum Pump PTS 300 single phase, universal motor
- PTS03003UNIV Triscroll Dry Vacuum Pump PTS 300 3 phase, universal motor

Technical Specifications

Vacuum Performances
- **Pumping speed for N₂**: \(N_2 = 700 \text{ L/s} \)
- **Pumping speed for Ar**: \(\text{Ar} = 680 \text{ L/s} \)
- **Pumping speed for He**: \(\text{He} = 680 \text{ L/s} \)
- **Pumping speed for H₂**: \(\text{H}_2 = 580 \text{ L/s} \)
- **Compression ratio for N₂**: \(N_2 > 1 \times 10^{10} \)
- **Compression ratio for He**: \(\text{He} = 2 \times 10^8 \)
- **Compression ratio for H₂**: \(\text{H}_2 = 2.5 \times 10^6 \)
- **Base pressure**: \(< 1 \times 10^{-10} \text{ mbar} \)
- **Max foreline pressure for N₂**: 6 mbar
- **Inlet Flange size**: ISO 160K, CFF 8”, CFF 6”, ISO 160F
- **Foreline Flange**: KF25

Other
- **Rotational speed**: Selectable from 350 Hz to 825 Hz
- **Start up time (90% of full speed)**: < 6 min (with 5 m pump cable length)
- **Recommended forepump**: PTS300, DS302
- **Operational position**: Any
- **Cooling options**: Forced Air (up to 35 °C ambient temp.)
- **Max flange temp. during bake-out (no gas flow)**: 120°C (CFF), 80°C (ISO)
- **Noise level (pump at full speed, no load)**
 - Fan off: < 52 dB(A) at 1 meter
 - Fan on: < 55 dB(A) at 1 meter
- **Storage temperature**: -20 °C to +70 °C
- **Certifications**: CE, CSA, RHOS
- **Purge and Vent**: Standard Purge & Vent ports
 - Automated Purge/Vent device (accessory)
- **Weight**: ISO 160 K = 15.7 Kg, CF 8” = 22.3 Kg

(*) According to Pneurop 5608 III, TS 300 PRIMARY PUMP, NO INLET SCREEN

Controller Specifications
- **Motor control mode**: Field Oriented Control (FOC)
- **Input voltage**: 100 - 240 Vac (± 10%)
- **Input frequency**: 50 - 60 Hz
- **Maximum input power**: 450 VA
- **Maximum output power**
 - 320 W (pump ramp-up)
 - 300 W (water cooling)
 - 200 W (forced air cooling)
 - (Specification with standard cable length 5mt)
- **Interface**: Navigator standard remote I/O RS 232, RS 485 serial
 - Can accept internal Profibus board
- **Protection category**: IP 20
- **Data Logger**: Standard
- **Stop speed reading**: Standard
- **Active stop**: Standard
- **Automated Purge/Vent device control**: Standard
- **External gauge readout**: 2 ports compatible with all Agilent gauges
- **Primary pump control**: Pilot 2 external configurable relays
 - (48 Vdc (± 10% - 250 mA MAX)
COMPRESSION RATIO vs FORELINE PRESSURE

![Compression Ratio vs Foreline Pressure Graph](image)

PUMPING SPEED

![Pumping Speed Graph](image)

OUTLINE DRAWING

![Outline Drawing](image)

<table>
<thead>
<tr>
<th>Model</th>
<th>Inlet Flange</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>969-6013</td>
<td>ISO 160K</td>
<td>241.8 [9.52]</td>
<td>Ø179.9 [7.08]</td>
<td>KF 25</td>
</tr>
<tr>
<td>969-6017</td>
<td>CFF6"</td>
<td>258.7 [10.19]</td>
<td>Ø151.6 [5.97]</td>
<td>KF 25</td>
</tr>
</tbody>
</table>

Dimensions: millimeters [inches]
Turbo-V 850 TwisTorr Rack

TECHNICAL SPECIFICATIONS

Vacuum Performances
- Pumping speed for N₂ (*) \(N₂ = 750 \text{ L/s} \)
- Pumping speed for Ar (*) \(Ar = 700 \text{ L/s} \)
- Pumping speed for He (*) \(He = 690 \text{ L/s} \)
- Pumping speed for H₂ (*) \(H₂ = 590 \text{ L/s} \)
- Compression ratio for N₂ \(N₂ = 1 \times 10^{11} \)
- Compression ratio for Ar \(Ar > 1 \times 10^{11} \)
- Compression ratio for He \(He = 2 \times 10^{9} \)
- Compression ratio for H₂ \(H₂ = 2.5 \times 10^{7} \)
- Base pressure* <1 x 10⁻¹⁰ mbar
- Max foreline pressure for N₂ 6 mbar

Other
- Rotational speed
 - Selectable from 350 Hz to 825 Hz
- Start up time (90% of full speed) < 6 min (with 5 m pump cable length)
- Recommended forepump PTS300, DS302
- Operational position
 - Any
- Cooling options
 - Forced Air (up to 35 °C ambient temp.)
 - Water (corrosion resistant loop)
- Max flange temp. during bake-out (no gas flow)
 - 120°C (CFF), 80°C (ISO)
- Noise level (pump at full speed, no load)
 - FAN off < 52 dB(A) at 1 meter
 - FAN on < 55 dB(A) at 1 meter
- Storage temperature
 - -20 °C to +70 °C
- Certifications
 - CE, CSA, RHOS
- Purge and Vent
 - Standard Purge & Vent ports
 - Automated Purge/Vent device (accessory)
- Weight
 - ISO 200 K = 15.8 Kg
 - CFF 10" = 22.4 Kg

*: According to Pneurop 5608 III, TS 300 PRIMARY PUMP, NO INLET SCREEN

Controller Specifications
- Motor control mode
 - Field Oriented Control (FOC)
- Input voltage
 - 100 - 240 Vac (± 10%)
- Input frequency
 - 50 - 60 Hz
- Maximum input power
 - 450 VA
- Maximum output power
 - 320 W (pump ramp-up)
 - 300 W (water cooling)
 - 200 W (forced air cooling)
 - (Specification with standard cable length 5mt)
- Interface
 - Navigator standard remote I/O
 - RS 232, RS 485 serial
 - Can accept internal Profibus board
- Protection category
 - IP 20
- Data Logger
 - Standard
- Stop speed reading
 - Standard
- Active stop
 - Standard
- Automated Purge/Vent device control
 - Standard
- External gauge readout
 - 2 ports compatible with all Agilent gauges
- Primary pump control
 - Pilot 2 external configurable relays
 - (48 Vdc (± 10%) - 250 mA MAX)

ORDERING INFORMATION

Pump
- 969-6015 TURBO-V 850 ISO 200K RACK
- 969-6016 TURBO-V 850 CFF10" RACK
- 969-6019 TURBO-V 850 ISO 200F RACK

Electronics
- 969-9525 TURBO-V 750/850-AG RACK CNT
- 969-9526 TURBO-V 750/850-AG RACK CNT PROFIBUS

Accessories
- 969-9958 Mains cable NEMA Plug, 3m long
- 969-9957 Mains cable European Plug, 3m long
- 969-6502 Turbo-V 750/850 TwisTorr Purge/Vent Device
- 969-6503 Turbo-V 750/850 TwisTorr Fan
- 969-6504 Turbo-V 750/850 TwisTorr Purge/Vent 5 M Extension Cable
- 969-6505 Turbo-V 750/850 TwisTorr Purge/Vent 15 M Extension Cable
- 969-6506 Turbo-V 750/850 TwisTorr Purge/Vent 25 M Extension Cable
- 969-6514 Turbo-V 750/850 TwisTorr Fan 5 M Extension Cable
- 969-6515 Turbo-V 750/850 TwisTorr Fan 15 M Extension Cable
- 969-6516 Turbo-V 750/850 TwisTorr Fan 25 M Extension Cable
- 969-6518 Turbo-V 750/850 TwisTorr 10 M Pump Extension Cable
- 969-6519 Turbo-V 750/850 TwisTorr 20 M Pump Extension Cable
- 969-9883 T-Plus software and serial cable
- 969-9316 Inlet screen ISO 200 and CFF 10'
- 969-9347 Water cooling kit (plastic model)
- 969-9337 Water cooling kit (metallic model)
- 969-9346 Vibration isolator, ISO 200
- 969-9336 Vibration isolator, CF 10'
- 969-9108 Vent flange, NW 10 KF / M8
- 969-9239 Purge valve with KY16-M12 10 SCCM
- 969-9240 Purge valve with KY16-M12 10 SCCM
- 969-9241 Purge valve KY16-M12 20 SCCM
- 969-9242 Purge valve KY16-M12 20 SCCM
- 949-9325 Forepump DS 302, with 1 ph., universal motor
- PTS03001UNIV Triscroll Dry Vacuum Pump PTS 300 single phase, universal motor
- PTS03003UNIV Triscroll Dry Vacuum Pump PTS 300 3 phase, universal motor
Turbo-V 750 and Turbo-V 850 TwisTorr
The new molecular-drag technology

ADVANCE EXCHANGE
To maximize uptime, and for those occasions where you cannot afford stopping your process, Varian offers exchange units for advanced shipment, with pumps which are rebuilt to as-new specs and latest revision level. As soon as requested, your order can be processed within 24 hours.

REPAIR
Varian products offer unmatched reliability, performance and cleanliness. Production requirements, however, inevitably create, over time, the need for maintenance and repair. Timely repair at Varian will keep your products performing at an outstanding level all the time.

UPGRADE
Designed for customers who want replace a Varian unit with a newest technology product. We rebuild these products to as-new specifications, with a full 12-month warranty level all the time.

NOTICE: This document contains references to Varian. Please note that Varian, Inc. is now part of Agilent Technologies. For more information, go to www.agilent.com/chem.