

Short Instructions Incl. Declaration of Conformity

BG 805 131 BE / A (2005-10)

Product Identification

In all communications with Pfeiffer Vacuum, please specify the information on the product nameplate. For convenient re-ference copy that information into the space provided below.

Validity

This document applies to products with part number

PT R27 000	(DN 25 ISO-KF)
DT D07 004	(DNI 40 ICO KE)

PT R27 001	(DN 40 ISO-KF)
PT R27 002	(DN 40 CF-R)

The part number (No) can be taken from the product nameplate

If not indicated otherwise in the legends, the illustrations in this document correspond to the gauges with the vacuum connection DN 25 ISO-KF. They apply to gauges with other vacuum connections by analogy

We reserve the right to make technical changes without prior notice

All dimensions in mm.

Intended Use

The PBR 260 Compact FullRange™ BA Gauge has been designed for vacuum measurement of non-flammable gases and gas mixtures in a pressure range 5×10⁻¹⁰ ... 1000 mbar. The gauge is a part of the Pfeiffer Vacuum Compact Gauges family and can be operated in connection with the MaxiGauge™ vacuum measurement and control unit or with another evaluation unit.

Functional Principle

Over the whole measurement range, the PBR 260 Compact FullRange™ BA Gauge has a continuous characteristic curve and its measuring signal is output as logarithm of the pressure

The gauge functions with a Bayard Alpert hot cathode ioniza-In a defined overlapping pressure range, a mixed signal of the two measurement systems is output. Above that range, a Pirani signal, below that range, a hot cathode signal is output. The Pirani measurement system switches the hot cathode measurement system on and off to prevent filament burn-out and excessive contamination. Two switching on/off ranges are available.

Trademarks

MaxiGauge™ FullRange™ INFICON GmbH INFICON GmbH

Symbols Used

DANGER STOF

Information on preventing any kind of physical injury.

WARNING /!\ Information on preventing extensive equipment and environmental damage

/!/ Caution

Information on correct handling or use. Disregard can lead to malfunctions or minor equipment damage

Personnel Qualifications

General Safety Instructions

- Adhere to the applicable regulations and take the necessary precautions for the process media used. Consider possible reactions between the materials $(\rightarrow \mathbb{B}$ "Technical Data") and the process media. Consider possible reactions (e.g. explosion) of the process media due to the heat generated by the product.
- Adhere to the applicable regulations and take the necessary precautions for all work you are going to do and consider the safety instructions in this document.
- Before beginning to work, find out whether any vacuum components are contaminated. Adhere to the relevant regulations and take the necessary precautions when handling contaminated parts

Communicate the safety instructions to all other users.

Liability and Warranty

Pfeiffer Vacuum assumes no liability and the warranty becomes null and void if the end-user or third parties

- · disregard the information in this document use the product in a non-conforming manner .
- make any kind of interventions (modifications, alterations etc.) on the product
- use the product with accessories not listed in the corresponding product documentation.

The end-user assumes the responsibility in conjunction with the process media used.

Gauge failures due to contamination, as well as expendable parts (filament), are not covered by the warranty

Technical Data

Measurement range (air, N₂) 5×10⁻¹⁰ ... 1000 mbar Overlapping range hot cathode - Pirani $5.5 \times 10^{-3} \dots 2.0 \times 10^{-2}$ mbar $2.0 \times 10^{-3} \dots 8.0 \times 10^{-3}$ mbar high (default) low ≈15 % measurement Accuracy (10⁻⁸ ... 10⁻² mbar) (after 5 min. stabilization) Repeatability ≈5 % measurement (10⁻⁸ ... 10⁻² mbar) (after 5 min. stabilization) Emission of hot cathode Switching on pressure (hi) 2.4×10⁻² mbar (default) 3.2×10⁻² mbar (default) Switching off pressure (hi) 9.9×10⁻³ mbar Switching on pressure (lo) 1.3×10⁻² mbar Switching off pressure (lo) Emission current (with decreasing pressure) 7.2×10⁻⁶ mbar < p < 2.4×10⁻² mbar 25 µA $p \le 7.2 \times 10^{-6}$ mbar 5 mA Emission current switching $25 \ \mu A \Rightarrow 5 \ mA$ (with 7.2×10⁻⁶ mbar decreasing pressure) $5 \text{ mA} \Rightarrow 25 \mu\text{A}$ (with 3.2×10⁻⁵ mbar increasing pressure) Degas (only if $p < 7.2 \times 10^{-6}$ mbar) approx, 16 mA / 4.0 W current control input signal 0 V / 24 V, PLC level, high active duration max. 3 min, followed by automatic stop In degas mode, the PBR 260 keeps supplying measurement values the tolerances of which can be higher than during normal operation it signal (measuring O si

Output signal (measuring signal)	
voltage range	0 10.2 V
measurement range	0.774 V 10 V (5×10 ⁻¹⁰ mbar 1000 mbar)
relationship voltage- pressure	logarithmic, 0.75 V / decade
error signals	→ 🛄 [1]
0.3 V	error hot cathode system
0.5 V	error Pirani system, elec- tronics incorrectly mounted to sensor
underrange	0.5 V < U < 0.774 V
overrange	$10 V < U \le 10.2 V$ (measuring signal limited to 10.2 V by software)
Minimum load	10 kΩ
Gauge identification (U _{max} = 4.25 V)	Resistor 17.2 k Ω referenced to supply common
Adjustment	
Pirani HV	automatic adjustment by hot cathode at 1 3×10 ⁻³ mbar
ATM (<atm> button)</atm>	adjustment via ATM button (keep button depressed for at least 5 seconds) at at- mospheric pressure
Zero point adjustment (<atm> button)</atm>	adjustment via ATM button (keep button depressed for at least 2 seconds) at ≤1×10 ⁻⁴ mbar
Hot cathode	factory adjusted, readjust- ment not required

Supply

Voltage at gauge	20 28 VDC ²⁾ (max. ripple. 2 V _{pp})
Power consumption standard degas emissions start (200 ms)	≤0.5 A ≤0.8 A ≤1.4 A

1) The MaxiGauge[™] fulfills these requirements.

2) The minimum voltage of the power supply must be increased proportionally to the length of the sensor cable.

Power consumption	≤16 W
Fuse to be connected 1)	≤1.25 AT
Voltage at the supply unit with	21 28 VDC
maximum cable length	(max. ripple. 2 V _{pp})
Electrical connection	Hirschmann compact
	connector GO 6,
	6 contacts, male
Cable	5 poles plus screening
Cable length max.	35 m (0.25 mm ² conductor)
	50 m (0.34 mm ² conductor) 100 m (1.0 mm ² conductor)
Grounding concept	\rightarrow Figure 1
Materials on the vacuum	
side	
housing, supports,	
screens	stainless steel
feedthrough	NiFe nickel plated
isolator	glass
cathode	iridium, yttrium oxide
cathode holder	molybdenum
Pirani element	tungsten, copper
Internal volume	2
DN 25 ISO-KF DN 40 ISO-KF	$\leq 24 \text{ cm}^3$ $\leq 24 \text{ cm}^3$
DN 40 ISO-KF DN 40 CF-R	$\leq 24 \text{ cm}^3$ $\leq 34 \text{ cm}^3$
Pressure max.	2 bar (absolute)
Tressure max.	
Admissible temperatures	
storage	–20 °C +70 °C
operation bakeout	0 °C +50 °C
bakeout	150 °C (without electronics unit or with extension)
Relative humidity	
year's mean	≤ 65% (no condensation)
during 60 days	≤ 85% (no condensation)
Use	indoors only
	altitude up to 2000 m
Type of protection	IP 30

Dimensions [mm]

315 g (Flansch DN 40 ISO-KF) 550 g (Flansch DN 40 CF-R) **Measuring Signal vs. Pressure** Pressure p [mbar] 1E+04 1E+03 1E+02 1E+01 1E+00 1E-01 1E-02 + 1 1E-03 Sensor 1E-04 1E-05 1E-06 1E-07 overrange 1E-08 1E-09 1E–10 لىسى 0.0 5.0 6.0 7.0 8.0 1.0 2.0 3.0 4.0 9.0 10.0 Measuring signal U[V] p = 10^{(U-7.75)/0.75+c} υ [V] [mbar] 0 [V] [Pa] 2 [V] [Torr] -0.125 valid in the range where p pressure U measuring signal $0.774 \ V \le U \le 10.000 \ V$ constant (pressure unit dependent)

285 g (Flansch DN 25 ISO-KF)

Weight

Gas Type Dependence

Hot cathode range

С

For gases other than air, the pressure in the indication range $p < 10^{-3}$ mbar can be determined by a simple conversion:

	p _{eff} = K × indicated pressure		
where	Gas type	K (mean)	
	Air (N ₂ , O ₂ , CO)	1.0	
	Xe	0.4	
	Kr	0.5	
	Ar	0.8	
	H ₂	2.4	
	Ne	4.1	
	He	5.9	

Pirani range

	STOP DANGER
(+p)	Caution: overpressure in the vacuum system >1 bar
	Injury caused by released parts and harm caused by escaping process gases can result if clamps are opened while the vacuum system is pressurized.
	Do not open any clamps while the vacuum sys- tem is pressurized. Use the type of clamps which are suited to overpressure.
	STOP DANGER
	Caution: hazardous voltages Incorrectly grounded products can be extremely hazardous in the event of a fault.
	The gauge must be electrically connected to the grounded vacuum chamber. This connection must conform to the requirements of a protective connection according to EN 61010:
	 CF flanges fulfill this requirement.
	• For gauges with a KF flange, use a conduc- tive metallic clamping ring.
	tive metallic clamping ring.
	tive metallic clamping ring.
	tive metallic clamping ring.
	tive metallic clamping ring. Caution Caution: vacuum component Dirt and damages impair the function of the
	tive metallic clamping ring. Caution Caution: vacuum component Dirt and damages impair the function of the vacuum component. When handling vacuum components, take appropriate measures to ensure cleanliness and
	tive metallic clamping ring.

The gauge should be mounted so that no vibrations occur. The gauge may be mounted in any orientation. However, any particles and condensates present should not be able to penetrate into the measuring chamber. Install the gauge in such a way that it need not be removed for adjustment.

Remove the protective lid and install the product to the vacuum system.

Power Connection

Precondition: Vacuum connection is properly made

P

- Before connecting or disconnecting the product, turn off the control system.
- If no sensor cable is available, make one according to the diagram.

Connect the signal cable to the gauge and secure it with the screw.

Connect the gauge to the measurement and control unit.

Operation

When the voltage is applied, the measuring signal is available between pins 2 and 3. Over the whole measurement range, the measuring signal is output as a logarithm of the pressure (Relationship between measuring signal and pressure \rightarrow "Technical Data").

Allow for a stabilizing time of approx. 10 minutes. Once the gauge has been switched on, permanently leave it on irrespective of the pressure.

Gas Type Dependence

The measurement value is gas dependent. The display applies to dry air, N_2 , O_2 and CO. For other gases, it has to be converted (\rightarrow "Technical Data").

If the gauge is operated in connection with a MaxiGaugeTM vacuum measurement and control unit, a calibration factor can be entered for correction of the reading ($\rightarrow \square$ [2]).

Measurement Range

The PBR 260 covers the measurement range of 5×10^{-10} mbar ... 1000 mbar.

- The Pirani system continuously monitors the pressure.
- The hot cathode system (controlled by the Pirani) is only switched on when the pressure drops below the set threshold (p_{on}). The hot cathode will be ready for operation after a few seconds' heating time, when the <EMI ON> lamp is lit.
- When the pressure rises above the setpoint (p_{off}) the hot cathode is switched off and the <EMI ON> lamp turns off.

In the upper pressure range, the Pirani reading and in the lower pressure range, the hot cathode reading is output. In the overlapping range ($p_{\text{lower}} \dots p_{\text{upper}}$), a combined signal of the two measurement systems is supplied:

Defining the Switching on/off Range

The PBR 260 has two definable switching on/off ranges with their corresponding overlapping ranges. The switching on/off range is selected with the <P \leftrightarrow BA> switch and should be chosen in such a way that it is situated outside the process pressure range. The positions "high" (default) and "low" are available. Preferably, "low" should be selected as contamination of the hot cathode system is reduced at lower pressures.

The switching on/off range must be selected before the gauge is activated as the switch position is polled only when the gauge is switched on.

Adjusting the Gauge

The gauge is factory calibrated. If used under different climatic conditions or in a different position, through aging or contamination, and after exchanging the sensor, the characteristic curve can be offset and readjustment can become necessary. Only the Pirani element can be adjusted. The hot cathode system is factory adjusted.

HV adjustment:

At $p\approx 2\textbf{x}10^{\cdot3}$ mbar the Pirani system is automatically adjusted by the hot cathode.

Adjustment at atmospheric pressure:

2 Insert a pin through the opening marked <ATM> and push the button inside for at least 5 s.

Zero point adjustment:

- A zero point adjustment is recommended
- after the sensor has been exchanged
- as part of the usual maintenance work for quality assurance.

The push button used for the adjustment at atmospheric pressure is also used for the zero point adjustment.

Operate gauge for approx. 10 minutes at a pressure of $\leq 1 \times 10^{-4}$ mbar.

Insert the pin through the opening marked <ATM> and push the button inside for at least 2 s..

The adjustment is done automatically and ends after 2 minutes.

Degas

Deposits on the electrode system of the hot cathode ionization gauge can lead to unstable measurement readings. In such a case it is advisable to start a degas process of the anode (bakeout) at a pressure below 7.2×10⁶ mbar (5 mA emission current). Depending on the application, this function can be activated via a MaxiGauge[™] vacuum measurement and control unit, manually with a switch, or automatically by the system control (e.g. PLC). The bakeout process is automatically stopped by the PBR 260 after 3 minutes, if it has not been terminated before.

The degas process is activated when the control signal (Pin 1) switches from OFF (0 V) to ON (24 V). It is deactivated when the control signal switches from ON (24 V) to OFF (0 V), or after a maximum of 3 minutes.

For a repeated degas process, the control signal first has to switch from ON (24 V) to OFF (0 V), to then start the degas process again with ON (24 V). If the degas function is activated by the system control, it should be set to OFF again by the system control after max. 3 minutes of bakeout in order for an unambiguous operating status to be achieved.

The degas process causes a heating of the electron collector grid to approx. 700 $^\circ C$ by electron bombardment.

Deinstallation

Maintenace, Troubleshooting

, → □□ [1]

R Gauge failures due to contamination, as well as expendable parts (filament), are not covered by the warrantv.

Returning the Product

WARNING

Caution: forwarding contaminated products Products returned to Pfeiffer Vacuum for service or repair should preferably be free of harmful substances (e.g. radioactive, toxic, caustic or microbiological)

Adhere to the forwarding regulations of all involved countries and forwarding companies and enclose a completed declaration of contamination.

Products that are not clearly declared as "free of harmful substances" are decontaminated at the expense of the customer.

When returning a product for service, put it in a tight and impact resistant package.

Disposal

DANGER Caution: contaminated parts

ISTOP

Contaminated parts can be detrimental to health. Before beginning to work, find out whether any parts are contaminated. Adhere to the relevant regulations and take the necessary precautions when handling contaminated parts.

WARNING /!\

relevant local regulations.

Caution: substances detrimental to the environment Electronic components must be disposed of in accordance with special regulations Dispose of such products in accordance with the

Separating the components

After disassembling the product, separate its components according to the following criteria:

Contaminated components

Contaminated components (radioactive, toxic, caustic, or biological hazard etc.) must be decontaminated in accordance with the relevant national regulations separated according to their materials, and recycled.

Other components

Such components must be separated according to their materials and recycled.

Further Information

- 🕮 [1] www.pfeiffer-vacuum.net Operating Instructions Compact FullRange™ BA Gauge PBR 260 BG 805 171 BE Pfeiffer Vacuum GmbH, D-35614 Asslar, Deutschland
- www.pfeiffer-vacuum.net III [2] Operating Instructions MaxiGauge™ TPG 256 A BG 805 186 BE Pfeiffer Vacuum GmbH, D-35614 Asslar, Deutschland

Declaration of Contamination

The service, repair, and/or disposal of vacuum equipment and com-

		n of produc	t	
	Type			
	Part number			
	Serial numb	ei		
_	Reason fo	r roturn	$-\vee$ —	
	Reason to	return		
_				
			$\overline{\mathbf{x}}$	
	Operating	fluid(s) used	а —	
	•	ained before		ą.)
	`			,
			-	
	Used in co	pper proce	ss	
	no 🗖	yes 🖬 📃	-🔨 Sea	al product in plastic
		,		g and mark it with a
				responding label.
			-V-	
	Process r	elated conta	aminatio	n of product:
	toxic		no 🗖 1)	yes 🗆 🔥
	corrosive		no 🗖 1)	yes 🗆
	biological ha	azaro	no 🖬 no 🗖	yes □ 2) yes □ 2)
	radioactive		no 🗖	yes 2)
	other harmf	ul substances	no 🗖 1)	yes 🖵
)	or not conta			2) Products thus
	amount of h			contaminated
		at exceed the exposure limi	ts	will not be accepted with
	politilooibio	expoon o mm		out written
	T 1	1 . C	-V-1	evidence of
	The produc of any subs	tances	· ·	decontami - nation.
	which are d		res 🗖	nauon.
	to health.	0 0		
ŀ				
l	6			
l		ful substand	ces, gas	es and/or
l	by-pr	oducts		
l				es, and by-products
l				ome into contact with:
l	l rade/p manufa	roduct name		nical name ymbol)
l			(=,	,
ſ				
l				
			-	L A site of the second
	Bracout	ions associated	with	
	Precaut	ions associated	with	Action if human contact
			with	

Legally binding declaration: 678

We hereby declare that the information on this form is complete and accurate and that we will assume any further costs that may arise. The contaminated product will be dis-patched in accordance with the applicable regulations. Organization/company

Address	
Post code, place	
Phone	
Email	
Name	
	 -

Company stamp

This form can be downloaded from our website Original for addressee 1 copy for accompanying documents 1 copy for file of sender

Declaration of Conformity

We Pfeiffer Vacuum, hereby declare that the equipment mentioned below complies with the provisions of the Directive relating to electrical equipment designed for use within certain voltage limits 73/23/EEC and the Directive relating to electromagnetic compatibility 89/336/EEC

Compact FullRange[™] BA Gauge **PBR 260**

Part Numbers

T R27 000	(DN 25 ISO-KF)
T R27 001	(DN 40 ISO-KF)
T R27 002	(DN 40 CF-R)

Standards

F P

Р

Harmonized and international/national standards and specifications:

EN 50081-1	(Electromagnetic compatibility: generic emission standard)
EN 50082-2	(Electromagnetic compatibility: generic immunity standard)

(Safety requirements for electrical equip-ment for measurement, control and labo- EN 61010-1 ratory use)

Signature

Pfeiffer Vacuum GmbH, Asslar

18 November 2005

MDC \searrow

Wolfgang Dondorf Managing director

PFEIFFER VACUUM

Berliner Strasse 43 D–35614 Asslar Deutschland Tel +49 (0) 6441 802-0 Fax +49 (0) 6441 802-202 info@pfeiffer-vacuum.de www.pfeiffer-vacuum.net