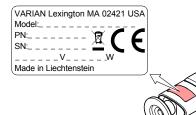


Pirani Standard Gauge **PVG-500** PVG-502


CE

Instruction Manual Incl. EC Declaration of Conformity

tgna44e1 (2010-05)

Product Identification

In all communications with VARIAN, please specify the information on the product nameplate. For convenient refe-rence copy that information into the space provided below.

Validity

This document applies to products with the following part numbers:

W filament

PVG500KV16 (DN 16 ISO-KF, w/o switching functions) PVG500KV16S (DN 16 ISO-KF, with switching functions)

Ni filament

PVG502KV16S (DN 16 ISO-KF, with switching functions) The part number (PN) can be taken from the product name-

plate We reserve the right to make technical changes without prior notice

All dimensions in mm.

Intended Use

The Pirani Standard Gauges PVG-500 and PVG-502 have been designed for vacuum measurement of gases in the pressure range of 5×10^4 ... 1000 mbar.

They must not be used for measuring flammable or combustible gases in mixtures containing oxidants (e.g. atmospheric oxygen) within the explosion range.

They can be operated in connection with an VARIAN controller or with another controller.

Safety

Symbols Used

(STOP) DANGER

Information on preventing any kind of physical injury.

WARNING /!\

Information on preventing extensive equipment and environmental damage

/!` Caution

Information on correct handling or use. Disregard can lead to malfunctions or minor equipment damage.

Personnel Qualifications

All work described in this document may only be carried out by persons who have suitable technical training and the cessary experience or who have been instructed by the end-user of the product.

General Safety Instructions

Adhere to the applicable regulations and take the necessary precautions for the process media used. Consider possible reactions between the materials and the process media.

Consider possible reactions (e.g. explosion) of the process media due to the heat generated by the product.

- Adhere to the applicable regulations and take the necessary precautions for all work you are going to do and consider the safety instructions in this document.
- Before beginning to work, find out whether any vacuum components are contaminated. Adhere to the relevant regulations and take the necessary precautions when handling contaminated parts.

Communicate the safety instructions to all other users.

Liability and Warranty

VARIAN assumes no liability and the warranty becomes null and void if the end-user or third parties

- disregard the information in this document
- use the product in a non-conforming manner
- make any kind of interventions (modifications, alterations etc.) on the product
- use the product with accessories not listed in the product documentation

The end-user assumes the responsibility in conjunction with the process media used.

Gauge failures due to contamination or wear and tear, as well as expendable parts (filament), are not covered by the warranty.

Measurement principle		thermal conductance according to Pirani		
Measurement range	5×1	10 ⁻⁴ 1000 mbar		
(air, O ₂ , CO, N ₂)				
Accuracy (N ₂)				
1×10 ⁻³ 100 mbar	±15	5% of reading		
5×10 ⁻⁴ 1×10 ⁻³ mbar	±50	0% of reading		
100 1000 mbar	±50	0% of reading		
Resolution	1%	of reading		
Repeatability				
1×10 ⁻³ 100 mbar	2%	of reading		
Output signal (measure- ment signal)				
Voltage range	VDC	0 +10.3		
Measurement range	VDC	+1.9 +10.0		
Voltage vs. pressure		logarithmic		
		1.286 V/decade		
Error signal	V	0 +0.5		
Filament rupture	V	+0.1		
Output impedance	Ω	2×4.7		
Minimum loaded imped- ance	kΩ	10, short-circuit proof		
Response time	ms	80		
Gauge identification		0 kΩ, referenced to supply nmon (voltage at pin 4 ≤5 V)		
Adjustment	one tactile switch for ATM and HV adjustment SP1, SP2			
Switching functions				
Threshold value indi-	one	tactile switch at measure-		
cation and setting	ment value output. Press briefly			
	for threshold indication. Keep pressing or press repeatedly for			
Catting same	threshold setting. 2×10 ⁻³ 500 mbar			
Setting range				
Hysteresis	10% above lower threshold			

Supply

Relay contact

closed

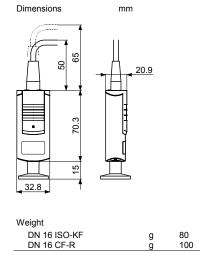
open

plies, instruments or control devices that conform to the requirements of a grounded extra-low voltage (SELV). The connection to the gauge has to be fused

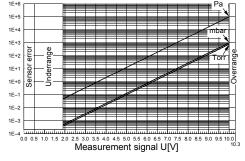
supply

30 V, 0.5 ADC, floating

at low pressure (LED is lit)


at high pressure, error, missing

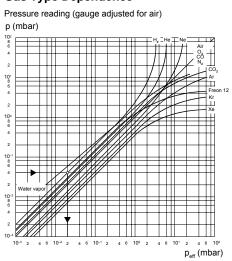
Supply voltage At gauge Ripple Current consumption	VDC V _{pp} mA	+14 +30 ≤1 <500 (max. starting current)	
Power consumption	W AT	≤1 1	
Fuse required 1)	A I (slow)	1	
Electrical connection		FCC 68 / RJ45 appliance connector, 8 poles, male	
Sensor cable		8 poles plus shielding	
Cable length		≤100 m (8×0.14 mm²)	
Grounding concept		\rightarrow "Power Connection"	
Vacuum connection to signal common		connected via 1 M Ω (voltage difference <15 V)	
Supply common to signal common		conducted separately, for differential measurement	
Materials exposed to vacuum		DIN 1.4301, DIN 1.4305, DIN 1.4435, glass, Ni, NiFe	
Filament PVG-500 PVG-502		W Ni	
Internal volume		cm³ ≈1.5	
Admissible pressure		bar 10, limited to inert (abs.) gases	


Admissible temperatures

Operation	°C	+5 +60
Vacuum connection	°C	80
Filament	°C	110
Storage	°C	-20 +65
Relative humidity	%	≤80 at temperatures up to ≤+31 °C, decreasing to 50 at +40 °C
Use		indoors only, altitude up to 2000 m NN
Mounting orientation		any
Degree of protection		IP40

Measurement Signal vs. Pressure

Pressure p [mbar]

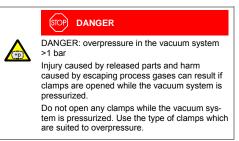

$p = 10^{((U-c)/1.286)}$	⇔	U = c + 1.286 × log ₁₀ p

valid in the range 5×10⁻⁴ mbar <p< 1000 mbar 3.75×10⁻⁴ Torr <p< 750 Torr 5×10⁻² Pa <p< 1×10⁵ Pa

U	р	с	_	U	р	с
[V]	[mbar]	6.143		[V]	[micron]	2.448
[V]	[µbar]	2.287		[V]	[Pa]	3.572
[V]	[Torr]	6.304		[V]	[kPa]	7.429
[V]	[mTorr]	2.448				

- where pressure р
 - measurement signal 11 С
 - constant (depending on pressure unit)

Gas Type Dependence



Calibration factors for the pressure range below 1 mbar

$p_{eff} = C \times pressure reading$				
Gas type	Calibration factor C	Gas type	Calibration factor C	
He	0.8	H ₂	0.5	
Ne	1.4	air, O ₂ , CO, N ₂	1.0	
Ar	1.7	CO ₂	0.9	
Kr	2.4	water vapor	0.5	
Xe	3.0	freon 12	0.7	

Installation

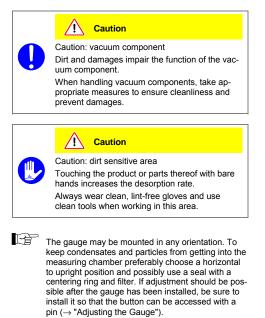
Vacuum Connection

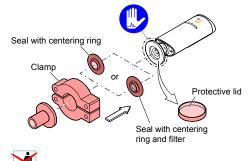
DANGER: overpressure in the vacuum system >2.5 bar

KF connections with elastomer seals (e.g. O-rings) cannot withstand such pressures. Process media can thus leak and possibly damage your health

Use O-rings provided with an outer centering rina.

DANGER (STOP)

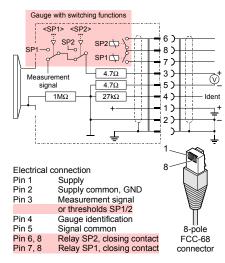

DANGER: protective ground


Incorrectly grounded products can be extremely hazardous in the event of a fault. The gauge must be electrically connected to the grounded vacuum chamber. This connection

must conform to the requirements of a protective connection according to EN 61010: CF connections fulfill this requirement.

For gauges with a KF connection, use a conductive metallic clamping ring.

Remove the protective lid and install the product to the vacuum system.



Keep the protective lid.

Power Connection

1-35 Make sure the vacuum connection is properly made $(\rightarrow$ "Vacuum Connection").

If no sensor cable is available, make one according to the following diagram.

Connect the sensor cable to the gauge and the controller

When the supply voltage is applied, the measurement signal is available between pins 3 and 5 (relationship between measurement signal and pressure \rightarrow "Technical Data"). Allow a stabilization period of at least 10 minutes. It is advisable to operate the gauge continuously, irrespective of the pressure.

Gas Type Dependence

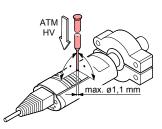
The measurement value is gas dependent. The pressure reading applies to dry air, O_2 , CO and N₂. For other gases, it has to be corrected (\rightarrow "Technical Data").

If the gauge is operated with an VARIAN controller, a calibration factor for correction of the actual reading can be applied ($\rightarrow \square$ of the corresponding controller).

Adjusting the Gauge

The gauge is factory calibrated. Due to long time operation or contamination, a zero drift could occur. Periodically check the zero and adjust it if necessary.

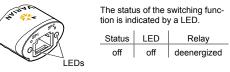
For adjusting the zero, operate the gauge under the same ambient conditions and in the same mounting orientation as normally

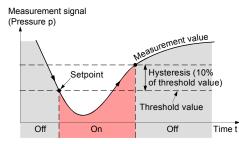

The gauge is adjusted to default values. However, it can also be adjusted to other pressure values, if the exact pressure value is known (reference measurement).

O If you are using a seal with centering ring and filter, check that they are clean or replace them if necessary $(\rightarrow$ "Deinstallation").

Activate the gauge and operate it at atmospheric pressure for at least 10 minutes.

B Press the button with a pin (max. ø1.1 mm) and the ATM adjustment is carried out: The gauge is adjusted to 1000 mbar (10 VDC) by default. By pressing the button >5 s the pressure value is increased towards 1200 mbar (or, by pressing it again, decreased towards 500 mbar) until the button is released or the limit is reached.

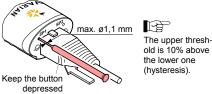


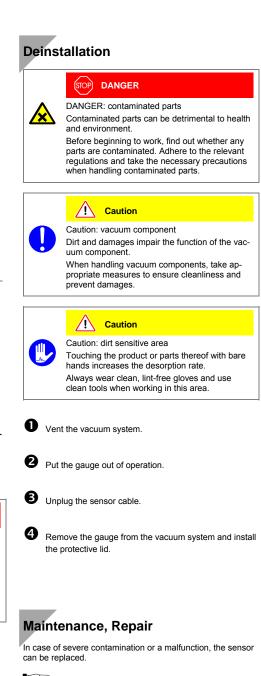

4 Evacuate to $p \ll 10^{-4}$ mbar (recommended) or to a pressure in the range of 10⁻⁴ ... 10⁻² mbar and wait at least 2 minutes.

6 Press the button with a pin and the HV adjustment is carried out: The gauge is adjusted to 1.2×10⁻⁴ mbar (1.1 VDC) by default. By pressing the button >5 s the pressure value is increased toward 1×10⁻² mbar until the button is released or the limit is reached.

Switching Functions

The setpoints are adjustable within a pressure range of $2{\times}10^3$... 500 mbar (voltage range of 2.67 ... 9.61 VDC). Each switching function provides a floating relay contact (→ "Electrical Connection")


Adjusting the Setpoints


DANGER: malfunction If processes are controlled via the signal output, keep in mind that by pressing a button <SP> the measururement signal is suppressed and that the corresponding threshold value is output instead. This can cause malfunctions Press a button <SP> only if you are sure that no damages can arise from a malfunction.

19 The status of the relay and LED is not affected by pressing the button.

O Press the button <SP1> with a pin (max. ø1.1 mm): The gauge changes to the switching function mode and outputs the current lower threshold value at the measurement value output for about 5 s. When the button is kept depressed for more than 5 s. the threshold setting is modified until the button is released or until the limit of the setting range is reached.

0 When the button is pressed again within 5 s the threshold setting is adjusted in the reverse direction.

Release the button. The gauge resumes operation after

5 s and the connected controller displays the current

The adjustment procedure for <SP2> is the same as de-

measurement value.

scribed for <SP1>.

R Gauge failures due to contamination or wear and tear, as well as expendable parts (filament), are not covered by the warranty.

VARIAN assumes no liability and the warranty becomes null and void if any repair work is carried out by the end-user or third parties

Spare Parts

When ordering spare parts, always indicate:

• all information on the product nameplate

description and ordering number according to the spare
 parts list

Sensor for gauge		Ordering number	
	PVG500KF16, PVG500KF16S	PVG500KF16RS	
	PVG502KF16S	PVG502KF16RS	
Ni			

Returning the Product

WARNING

WARNING: forwarding contaminated products Contaminated products (e.g. radioactive, toxic, caustic or microbiological hazard) can be detrimental to health and environment.

Products returned to VARIAN should preferably be free of harmful substances. Adhere to the forwarding regulations of all involved countries and forwarding companies and enclose a duly completed declaration of contamination.

Products that are not clearly declared as "free of harmful substances" are decontaminated at the expense of the customer. Products not accompanied by a duly completed declaration of contamination are returned to the sender at his own expense.

Disposal

STOP DANGER

DANGER: contaminated parts Contaminated parts can be detrimental to health

and environment. Before beginning to work, find out whether any parts are contaminated. Adhere to the relevant regulations and take the necessary precautions when handling contaminated parts.

WARNING

WARNING: substances detrimental to the environment

Products or parts thereof (mechanical and electric components, operating fluids etc.) can be detrimental to the environment.

Dispose of such substances in accordance with the relevant local regulations.

Separating the components

After disassembling the product, separate its components according to the following criteria:

- Contaminated components
 Contaminated components (radioactive, toxic, caustic, or biological hazard etc.) must be decontaminated in accordance with the relevant national regulations, separated according to their materials, and disposed of.
- Other components
 Such components must be separated according to their
 materials and recycled.

EC Declaration of Conformity

We, VARIAN, hereby declare that the equipment mentioned below complies with the provisions of the Directive relating to electromagnetic compatibility 2004/108/EC.

Products Pirani Standard Gauge PVG-500 PVG-502

Standards

Harmonized and international/national standards and specifications:

- EN 61000-6-2:2005 (EMC: generic immunity standard)
- EN 61000-6-3:2007 (EMC: generic emission standard)
- EN 61010-1:2001 (Safety requirements for electrical equipment for measurement, control and laboratory use)
- EN 61326-1:2006 (EMC requirements for electrical equipment for measurement, control and laboratory use)

Manufacturer / Signature

Varian Vacuum Technologies, 121 Hartwell Avenue, Lexington, MA, 02421 USA 19 May 2010

/ Way 2010

John Ehrann

John Ehmann General Manager

121 Hartwell Avenue Lexington, MA, 02421 USA Tel: (781) 861 7200 Fax: (781) 861 5437 custserv@varianinc.com www.varianinc.com